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Preface 

 

 

I first became familiar with PLLs by working for National Semiconductor (now acquired by 

Texas Instruments) as an applications engineer.  While supporting customers, I noticed that 

there were many repeat questions.  Instead of creating the same response over and over, it 

made more sense to create a document, worksheet, or program to address these recurring 

questions in greater detail and just re-send the file.  From all of these documents, worksheets, 

and programs, this book was born. 

Many questions concerning PLLs can be answered through a greater understanding of the 

underlying concepts and the mathematics involved.  By approaching problems in a rigorous 

mathematical way one gains a greater level of understanding, a greater level of satisfaction, 

and the ability to extend the learnings to other problems.   

Many of the formulas that are commonly used for PLL design and simulation contain gross 

approximations with no or little justification of how they were derived.  Others may be 

rigorously derived, but are from outdated concepts or are not compared to measured results to 

ensure they account for all relevant factors.  It is therefore no surprise that there are so many 

rules of thumb which yield unreliable results.    

There is also the approach of not trusting formulas enough and relying on only measured 

results.  The fault with this is that many great insights are lost and it is difficult to learn and 

grow in PLL knowledge this way.  By knowing what a result should theoretically be, it makes 

it easier to spot and diagnose problems with a PLL circuit.  This book takes a unique approach 

to PLL design by combining rigorous mathematical derivations for formulas with actual 

measured data.  When there is agreement between these two, then one can feel much more 

confident with the results.   

Although PLL technology is evolving, many concepts are timeless and will never become 

outdated.   The sixth edition has the same contents as the fifth edition except with several 

errata corrected. 
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Chapter 1      Basic PLL Overview 

 

Introduction 

The PLL (Phased Locked Loop) has been around for many decades.  Some of its earliest 

applications included keeping power generators in phase and synchronizing to the sync pulse 

in a TV set.  Other applications include recovering a clock from asynchronous data and 

demodulating an FM modulated signal.  Although these are legitimate applications of the PLL, 

this book focuses mainly on the use of a PLL to generate a stable output frequency.  In this 

situation, the PLL starts with a fixed and stable input frequency and this is used to generate 

one or more output frequencies.  Components that generate a tunable output frequency directly 

typically are not as stable or low noise as a fixed frequency input, so by using negative 

feedback as is employed in a PLL, it is possible to get a tunable frequency that has both good 

accuracy and good noise performance.   
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Figure 1.1  The Basic PLL 

 

PLL Structure and Frequencies 

The PLL starts with a stable input frequency (fOSC).  This frequency is typically fixed and very 

stable over temperature and process. The R divider reduces this frequency to the phase detector 

frequency (fPD).  The phase-frequency detector then compares the phase of the R divider (fPD) 

with the phase of the N divider (fN) and produces current correction pulses that have a duty 

cycle that is proportional to the phase error between the two inputs to the phase detector. These 

pulses can be sourcing KPD current, sinking KPD current, or off (tri-state).   In later chapters, 

the charge pump is discussed in more depth, but for most practical purposes, it can be treated 

as an analog current source that outputs a current of magnitude KPD times the phase error as 

presented to the phase detector.  These current correction pulses then go through a low pass 

filter called the loop filter, which has a current to voltage transfer function Z(s).  The loop 

filter is typically implemented with discrete components, but can also be integrated on silicon 

or in the digital domain.  The loop filter is application specific and much of this book is 

devoted to the art of loop filter design.  The output voltage of the loop filter then is used to 
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steer the output frequency of the VCO (Voltage Controlled Oscillator).  The VCO is a voltage 

to frequency converter and has a proportionality constant of KVCO.   The output of the VCO 

then goes through the N divider and is divided down to an input of the phase detector, fN.  The 

phase detector compares the input phases and will cause both inputs to be the same frequency 

and phase in the steady state and the VCO frequency will be as follows: 

 

𝑓𝑉𝐶𝑂 = 
𝑁

𝑅
∙ 𝑓𝑂𝑆𝐶 (1.1)  

 

The N divider value can be changed in order to produce a range of VCO frequencies that have 

the same frequency accuracy as the crystal.   In some applications, there is no need for a VCO 

divider and one can use the direct VCO output.  When a range is specified, one typically 

specifies a channel spacing fCH for the spacing between the frequencies.   It is usually desirable 

to maximize the phase detector frequency, which means that it would be chosen equal to the 

channel spacing in this case, unless there were some other restrictions with the device that 

would cause it to be chosen to be lower.  

In the case that the output frequency of the PLL is to be fixed, the choice of the N divider 

value may not be intuitively obvious as there are many choices.  In this case, it is typically 

best to choose the N divider as small as possible to maximize the phase detector frequency in 

order get the best noise performance.   

 

𝑁

𝑅
 =  

𝑓𝑉𝐶𝑂
𝑓𝑂𝑆𝐶

  (1.2)  

 

Since the output frequency and input frequency are both known quantities, the right side of 

this equation is known and can be reduced to a lowest terms fraction.  Once this lowest terms 

fraction is known, the numerator is the N value and the denominator is the R value.  If this 

solution results in an N divider ratio that the PLL cannot do or phase detector frequency that 

is too high for the PLL to handle, then multiply both N and R by some integer until it is not 

an issue.  In the case where there is freedom to choose the input reference frequency, it is best 

to choose it so that it has a lot of common factors with the output frequency so that the N value 

is as small as possible. 

It is also possible for the dividers to be fractional.   Fractional N dividers are somewhat 

common and fractional values for the R and D divider could arise in a situation if there was a 

frequency doubler at the input or output.  In general, the output frequency is as follows. 

 

𝑓𝑂𝑈𝑇 = 
𝑓𝑉𝐶𝑂
𝐷

=
𝑁

𝑅 ∙ 𝐷
 ∙ 𝑓𝑂𝑆𝐶 (1.3)  
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Using an Output Divider to Extend the Frequency Range 

Fractional synthesizers with output dividers are commonplace in today’s market.   The broad 

host of applications for PLLs makes it desirable for the VCO to be able to tune over a wide 

frequency.   However, there is a trade-off for VCOs between tuning range and noise 

performance.  A common technique used is to combine the VCO with the output divider to 

produce this wide range.    

For instance, one can combine an octave VCO with a divider that does powers of 2 to cover a 

continuous range.  For instance, consider a VCO that can tune 2 to 4 GHz combined with a 

divider that can divide by 1, 2, 4, 8, 16, and 32.  The divide by 1 can create 2 to 4 GHz, the 

divide by 2 can create 1 to 2 GHz, and the divide by 4 can create 0.5 to 1 GHz, and so on until 

the entire range of 62.5 to 4000 MHz is covered.     

An alternative approach is to use a higher frequency divider of lesser tuning range and accept 

a small frequency hole to get continuous coverage.  For instance, one could take a divider that 

can do 1, 2, 3, 4, 5, ... 20 and combine with a VCO that tunes from 4 to 5 GHz to get frequency 

coverage from 200 MHz to 1 GHz, then with a divide by one and divide by 2, this can be 

extended to 0.5 to 2 GHz.   Extending on this concept, one could take a programmable divider 

of 1, 2, 4, 8, 16, and 32 to extend this tuning range to 31.25 to 2000 MHz with no gaps in 

coverage for VCO. 

 

Fractional PLL N Example with VCO Divider 

The model in Figure 1.3 is sufficient for understanding the fundamentals of PLLs, but for a 

more complete model, one also needs to allow for a VCO divider as shown in Figure 1.2 .   

The VCO divider is often used in cases where it is easier to integrate a higher frequency VCO 

and then divide down the frequency.    
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Figure 1.2  Fractional N PLL with VCO Divider 
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Industry Impact on PLL Terminology 

The term PLL technically refers to the entire system shown in Figure 1.1 ; however, challenges 

with integrating the VCO and input signal have caused industry to redefine the term.  

Semiconductor manufacturers often use the term “PLL” chip excludes the VCO.  When the 

capability to integrate VCOs came along, semiconductor vendors did not want to call this a 

PLL because they wanted it clear that the VCO was also included, so this is often called a 

frequency synthesizer.   Integration of the input reference is less common at the time of writing 

this book and is assumed that this is supplied external to the PLL chip. 

 

PLL Applications 

Integer PLL FM Radio 

Starting with a more basic example, consider an FM radio receiver where we want to generate 

a range of frequencies of 88, 88.1, 88.2, … to 108 MHz.  Assume that this is done by down 

converting the received signal to 10.7 MHz.  This means that the PLL frequency would be 

77.3 to 97.3 MHz with a channel spacing of 0.1 MHz.  
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Figure 1.3  Integer PLL Example 

 

Clock Recovery Applications 

One variation of a jitter cleaning application is a clock recovery application.  In wired 

communications, a clock is typically used to send data.  It is undesirable to require an extra 

wire to just send the clock.  In addition to this, skew between the data and clock wires becomes 

a concern.  One approach that can be used is to embed the clock with the data and then use a 

PLL to recover the clock.  The data should have a sufficient number of transitions in order to 

get the PLL to lock to the clock frequency and there are encoding methods that are designed 

to do this.  This also may put some special requirements on the phase detector.  The approach 

is to feed the data with embedded clock into the input reference of the PLL and then the 

recovered clock is attained at the VCO output. 
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Fractional PLL Two Way Radio 

One example of a PLL synthesizer in fractional mode using the VCO divider could be a two-

way radio that generates 430 to 480 MHz with a channel spacing of 10 kHz from a 20 MHz 

input frequency.  Assume that the device chosen has an input multiplier of four and an 

integrated VCO that tunes from 4300 to 5300 MHz.   Also assume that this VCO has a divider 

of ten after it.   Figure 1.4 shows how this can be done. 
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Figure 1.4  Two Way Radio Example 

 

Jitter Cleaner Applications 

In this type of application, the PLL can be used to improve the noise of a noisy input signal.     

This clock may be noisy for intentional reasons or for non-intentional reasons.  For instance, 

sometimes the clock is intentionally made noisy in order to reduce the radiated energy for 

EMI requirements.   

For whatever reason that the clock is dirty, the idea is to use this as the input reference for the 

PLL and configure the PLL such that it filters out this noise and replaces it with just the noise 

of the PLL.  The PLL can be used to scale the input frequency as well. 
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Figure 1.5  Example of a PLL used to clean a Noisy Input 

 



   8         Basic PLL Overview 

                              

Clocking Applications 

In some cases, all that is required is a fixed output frequency, such as the case of clocking an 

A/D converter.  Even though there might be fixed crystal frequencies that have pretty good 

performance, they tend to be at lower frequency.  By using a PLL, one can generate much 

higher fixed frequencies.   
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Figure 1.6  Example of PLL Clocking an A/D Converter 

 

 

 

Conclusion 

The PLL can be used to generate a stable output frequency from a fixed input frequency using 

a phase detector, charge pump, VCO, and dividers.  The output frequency can be adjusted by 

changing the divider values.  The output frequency can be a fixed frequency or a tunable range 

of frequencies.  There is a broad range of applications for the PLL.   
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Chapter 2      A Brief Overview of PLL Performance Characteristics 

 

Introduction 

The performance characteristics of the PLL are involved and optimizing them involves many 

trade-offs.  This chapter is intended to give the reader a simplified high-level overview of 

some of these key concepts.  Among these concepts are the loop characteristics, phase noise, 

spurs, and transient response. 

 

Loop Characteristics 

The closed loop transfer function from the input of the phase detector to the VCO output is 

determined by the N divider, VCO gain, charge pump gain, and the loop filter.  This is a low 

pass function with a cutoff frequency called the loop bandwidth (BW).   The choice of the loop 

bandwidth is the most critical design parameter and has a significant impact on phase noise, 

spurs, and the switching speed of a PLL.  For all noise and spurs not coming from the VCO, 

this transfer function multiplies up the phase noise within the loop bandwidth and suppresses 

it at offset offset frequencies greater than the loop bandwidth.  The VCO noise is suppressed 

below the loop bandwidth frequency and unshaped above the loop bandwidth frequency.  
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Figure 2.1  PLL Noise Transfer Functions 
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PLL Phase Noise 

In addition to the desired signal, a PLL will also produce undesired noise.  This noise can be 

thought of as noise on the phase of the output and is therefore called phase noise.  In the 

frequency domain, this is more commonly thought of as the density of the noise power relative 

to the carrier power and measured in dBc/Hz.   

 

 

Figure 2.2   Phase Noise as seen on a Spectrum Analyzer 

 

A spectrum analyzer is a piece of test equipment that can be used to measure phase noise and 

displays noise power vs. frequency as shown in Figure 2.2 .  In this case, the measurement 

needs to be adjusted by 10∙log(Resolution Bandwidth), which would be 10∙log(24.4) = 13.8 

dB.   For instance, the phase noise at 10 kHz would be −57.9 – 13.8 =     -71.7 dBc/Hz.  

Sometimes spectrum analyzers have correction factors that can account for a few dB.  

Sometimes there is a marker noise function to help account for this. 

The phase noise analyzer tracks the VCO frequency and then plots the phase noise as a 

function of offset.   Figure 2.3 shows the same frequency and setup condition as shown in 

Figure 2.2 with the exception that the instrument was switched from spectrum analyzer mode 

to phase noise analyzer mode.  Note that the phase noise at 10 kHz is −74.1 dBc/Hz, which is 

better and more accurate than the measurement in spectrum analyzer mode.  Part of this reason 

could be due to the spectrum analyzer correction factor. 
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Figure 2.3   Phase Noise as Seen on a Phase Noise Analyzer 

 

 

 

 

Spurs 

Spurs can be thought of as noise that is concentrated at a specific offset from the carrier as 

shown in Figure 2.4 .  These are typically measured in dBc with a spectrum analyzer.  There 

are many kinds of spurs and they can have multiple causes, but most of them occur at very 

predictable offsets.  Spurs tend to occur at multiples of the phase detector frequency, input 

reference frequency, channel spacing, and fractions of the channel spacing.   
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Spectrum 10 dB / REF -8.7 dBm -35.919  dB

25  kHz
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Figure 2.4   Spurs as seen on a Spectrum Analyzer 

 

 

Impact of Dividers on Phase Noise and Spurs 

It is getting more common, especially with devices that include the integrated VCO, to have 

a divider after the VCO to extend the frequency range.  This divider has a significant impact 

on the phase noise and spurs.   For the phase noise going through a divider of value D, the 

phase noise is reduced by 20∙log(D).  So, a divide by two translates to a theoretical 6 dB 

improvement in phase noise.  In practice, this 6 dB is typically realized for closer in offsets, 

but at farther out offsets, the noise improvement may be less due to the divider noise and the 

fact that some of the noise far-out might not be correlated to the carrier frequency.  In regards 

to spurs, a divider does not change the offset frequency and theoretically reduces the 

magnitude by 20∙log(D).  Furthermore, because the offset frequency is not changed, this often 

allows the user to increase the channel spacing at the VCO by a factor of D to achieve the 

same channel spacing, which theoretically pushes the spurs to farther offsets, making them 

easier to filter.  This benefit is seen in practice, although there are certain spurs that are not 

improved as much as theoretically predicted due to crosstalk. 
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Transient Response and Lock Time 

The lock time is typically thought of as the amount of time it takes the PLL to settle to a given 

frequency tolerance after the N divider value is changed.  The lock time definition can be 

expanded to include cases where there is a phase disturbance or when the tolerance is 

expressed as a phase error instead of a frequency error. 

 

 

 

Figure 2.5   PLL Transient Response 

 

 

 

 

Conclusion 

Phase noise, spurs, and lock time are key performance characteristics and are all impacted 

dramatically by the loop characteristics, especially the loop bandwidth.  A lower loop 

bandwidth tends to improve spurs and far out phase noise, but degrades the lock time, and the 

opposite is true of a wide loop bandwidth, although it may improve close-in phase noise 

depending on the noise quality of the input reference.  Different applications may have 

different requirements, so there is no single PLL design that is optimal for every application. 



   14         Impact of the PLL Performance on the System 

                              

Chapter 3      Impact of the PLL Performance on the System 

 

Introduction 

Phase noise, spurs, and lock time are critical performance characteristics of a PLL.  This 

chapter discusses the impact of these on the performance of a typical system.   

 

Typical Wireless Receiver Application  
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Figure 3.1  Typical PLL Receiver Application 

 

General Receiver Description 

Figure 3.1 shows a typical receiver application using a PLL.  Several different channels, each 

with a unique frequency, are received by the antenna and allowed to pass through the 

preselection filter.  The signal is then amplified with a low noise amplifier (LNA) and 

downconverter with the RF (Radio Frequency) PLL to a fixed IF (Intermediate Frequency) 

signal. In other words, the frequency of the RF PLL is adjusted such that the difference of the 

desired channel frequency and the RF PLL frequency is always the same.  This signal then 

goes through the narrow filter that is at this fixed value in order to remove the unwanted mixer 

image as well as mixing products formed by undesired channels that pass through the 

preselection filter.     The IF PLL mixes this frequency down to baseband so that the 

information on the signal can be attained. 

Other than the obvious parameters of a PLL such as cost, size, and current consumption, the 

phase noise, reference spurs, and lock time are important to the performance of the system 

and will be discussed in more detail.    
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Phase Noise, Spurs, and Lock Time as They Relate to This System 

Phase noise at lower offsets from the carrier tends to increase bit error rates and degrade the 

signal to noise ratio of the system.  Many systems that care about integrated phase noise can 

be impacted heavily by the lower offset phase noise.  Phase noise at farther offsets can mix 

with other signals from other users in the system in order to create undesired noise products. 

Spurs are noise concentrated at discrete offset frequencies from the carrier.  These offset 

frequencies are typically multiples of the channel spacing.  These offset frequencies are 

typically exactly at frequencies where an adjacent user of the system can be and can mix down 

to create undesired noise products that fall on the desired carrier frequency.  

Lock time is the time that it takes for the PLL to change frequencies.  This can be for 

applications that scan over a frequency band or do frequency hopping. When the PLL is 

switching frequencies, no data can be transmitted, so lock time of the PLL must lock fast 

enough as to not slow the data rate.  Lock time can also be related to power consumption.  In 

some systems, the PLL only needs to be powered up when data is transmitted or received.  

During other times, the PLL and many other RF components can be off.  If the PLL lock time 

is less, then that allows systems like this to spend more time with the PLL powered down and 

therefore current consumption is reduced.  For other systems, the PLL need to scan over a 

range of frequencies and these applications tend to need faster PLL lock times. 

 

Analysis of Receiver System 

For the receiver shown in Figure 3.1 , the PLL that is closest to the antenna is typically the 

most challenging from a design perspective, due to the fact that it is tunable and higher 

frequency.  Since this PLL is tunable, there is typically a more difficult lock time requirement, 

which in turn makes it more challenging to meet spur requirements as well.  In addition to 

this, the requirements on this PLL are also typically stricter because the undesired channels 

are not yet filtered out from the antenna.   

The IF PLL has less stringent requirements, because it is lower frequency and also it is often 

fixed frequency.  This makes lock time requirements easier to meet.  There is also a tradeoff 

between lower spur levels and faster lock times for any PLL.  So if the lock time requirements 

are relaxed, then the spur requirements are also easier to meet.  The signal path coming to the 

second PLL has already been filtered, so typically the lock time and spur requirements are 

often less difficult to meet. 

 

Example of an Ideal System with an Ideal PLL 

For this example, assume all the system components are ideal.  All mixers, LNAs and filters 

have 0 dB gain and noise figure.  All filters are assumed to have an idea “brick wall” response.  

The PLL is assumed to put out a pure signal and have zero lock time.  
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Parameter Value Units 

 Receive Frequency 869.03 – 893.96 MHz 

RF PLL Frequency 783.03 – 807.96 MHz 

IF Frequency 86 MHz 

Channel Spacing 30 kHz 

Number of Channels 831 n/a 

Table 3.1  RF System Parameters 

 

The received channel will be one of the 831 channels.  The channels will be designated 0 to 

830, where channel 0 is at 869.03 MHz and channel 830 is at 893.96 MHz.    Now suppose 

one wants to receive channel 653 at 888.62 MHz.  This frequency comes in through the 

antenna, filter, and LNA and is presented to the first mixer.  The RF PLL frequency is then 

programmed to 802.62 MHz.  The output of the mixer is therefore the sum and difference of 

these two frequencies, which would be 1691.24 MHz and 86 MHz.  The filter afterwards 

filters out the high frequency signal so that only the 86 MHz signal passes through.  This 86 

MHz signal is then down converted to baseband with the IF PLL frequency, which is a fixed 

86 MHz. 

 

Ideal System with a Non-Ideal PLL 

Consider the effects of a non-zero lock time.  Suppose that the RF PLL takes 1 ms to change 

frequencies and the IF PLL takes 10 ms to change channels.  For this application, the fact that 

the IF PLL takes 10 ms to change channels really does not have any impact on system 

performance.  What this means is that once the receiver is turned on, it takes an extra 10 ms 

to power up.  Because the IF PLL never changes frequency, this is the only time this lock time 

comes into play.  Now the 1 ms lock time on the RF PLL has a greater impact.  If a person 

was using their cell phone and it was necessary to change the channel, then this lock time 

would matter.  This might happen if the user was leaving a cell and entering another cell and 

the channel they were on was in already occupied with another user.  Also, sometimes there 

is a supervisory channel that the cell phone needs to periodically switch to in order to receive 

and transmit information to the network.  This is the factor that drives the lock time 

requirement for the PLL in the IS-54 standard, after which this example was modeled.  The 

time needed to switch back and forth to do this needs to be transparent to the user and no data 

can be transmitted or received when the PLL is switching frequencies.   

Now consider the impact of phase noise and spurs of the PLL.  Suppose two signals, the 

desired channel to be received at 888.62 MHz, and an undesired channel at 888.65 MHz, as 

shown in Figure 3.2 .   
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Figure 3.2  Output of the Preselection Filter 

 

Assume that the RF PLL output has an output at 802.62 MHz with noise and spurs as shown 

in Figure 3.3 .  

 

 

Figure 3.3  Signal with Noise from RF PLL 
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The desired output would be a pure 86 MHz tone, but the noise and spurs of the RF PLL mix 

with both the desired and undesired channels.  One of the purposes of the narrowband filter is 

to remove noise and spurs, but the spur caused by the mixing of the 888.65 MHz undesired 

channel and the spur at 802.65 MHz lands exactly at 86 MHz and cannot be filtered as shown 

in Figure 3.4 .  Also, as no filter is perfect, some of the phase noise close to this 86 MHz signal 

will also pass through the narrowband filter.   

 

 

Figure 3.4  Output Signal from Mixer 

 

 

Conclusion 

This chapter has investigated the impacts of phase noise, spurs, and lock time on system 

performance.  These three performance parameters are greatly influenced by many factors 

including the VCO, loop filter, and N divider value.  Of course, it is desirable to minimize all 

three of these parameters simultaneously, but there are important trade-offs that need to be 

made.  Applications where the PLL only has to tune to fixed frequency tend to be less 

demanding on the PLL because the lock time requirements tend to be very relaxed, allowing 

one to optimize more for spur levels.  There is no one PLL design that is optimal for every 

application. 
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Chapter 4      Input Sources, Crystals, and Principles of Oscillation 
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Introduction 

The PLL starts with the assumption that there is an input signal.   This should be very accurate 

in frequency as any error is translated directly to the VCO.  This signal can be a recovered 

clock, a frequency generated from another chip, or a signal generated by a crystal /crystal 

oscillator.  Aside from the frequency of the input signal, characteristics such as phase noise, 

amplitude, and slew rate are also critical.   This chapter discusses some important properties 

of recovered clocks, crystals, and crystal oscillators.   

 

Recovered Clocks 

When data is transmitted over a long distance, one technique is to serialize the data and embed 

the clock.  By doing this, fewer wires are needed for transmission and issues with skew 

between the lines are eliminated.  The deserializer then recovers the clock from the data and 

interprets the signal sent.   Often times, recovered clocks do not have very good noise 

performance, but a PLL can be used to clean up the signal. 

 

Figure 4.1  Recovered Clock Before and After Being Cleaned by a PLL 
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Crystals and Crystal Oscillators 

Principles of Oscillation 

The general idea for an oscillator is to have an inverter with the output fed back to the input 

through a filter.  Since it is not possible to filter without delay, this filter can also be thought 

of as a delay.  In order for a circuit to oscillate, it must satisfy the following conditions known 

as the Barkhausen criterion. 

 

1. The open loop gain at the oscillation frequency must be one or greater 

 

2. The phase of the open loop gain at the oscillation frequency, including the phase 

shift of the inverter must be a zero or some other multiple of 360 degrees. 

 

The most basic oscillator is called the ring oscillator.  This is basically an odd number of 

inverters connected in series with the output of the last one fed back to the input of the first 

one.  A delay is added to set the frequency.  If the gate delay of the inverter is significant, it 

adds to this delay.  This delay can also be thought of as a filter.   The only difference is that a 

filter produces a sine wave instead of a square wave.  This circuit model works especially well 

for crystal oscillators and is very intuitive.   The fundamental frequency of oscillation, fosc, is 

easy to calculate once the delay,  is known. 

 

𝑓𝑂𝑆𝐶 = 
1

𝜏
 (4.1)  

 

 

1/

Out

 

Figure 4.2  A Typical Crystal Oscillator Diagram 

 

Note that there is no input, and the oscillator relies on noise to get it started.  Once it does, the 

inverter sustains the oscillations.  The startup time is governed by the gain of the inverter and 

the external components around it.  One way to implement the delay is with a crystal.    
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Crystal Element for Used in Oscillators 

The crystal can be viewed as a filter with a very low bandwidth and high frequency accuracy 

with an equivalent circuit in Figure 4.3 with Lm (motional inductance), Cm (motional 

capacitance), Rs (series resistance), and Cp (parallel capacitance). 

Lm Cm

Cp

Rs

 

Figure 4.3  A Typical Crystal Oscillator Circuit 

 

The impedance of the crystal is given by: 

 

𝑍(𝑠) =  
𝑠2 + 𝑠 ∙ (

𝑅𝑠
𝐿𝑚) + (

1
𝐿𝑚 ∙ 𝐶𝑚)

𝑠 ∙ 𝐶𝑝 ∙ (𝑠2 + 𝑠 ∙ (
𝑅𝑠
𝐿𝑚) + (

𝐶𝑚 + 𝐶𝑝
𝐶𝑚 ∙ 𝐿𝑚 ∙ 𝐶𝑝))

 (4.2)  

 

The imaginary part of the numerator will never be zero Rs, but satisfying the following 

equation for series resonance will minimize the impedance. 

 

𝑠2 + (
1

𝐿𝑚 ∙ 𝐶𝑚
) = 0 (4.3)  

 

𝜔𝑆𝑒𝑟𝑖𝑒𝑠 = √
1

𝐿𝑚 ∙ 𝐶𝑚
 (4.4)  

 

If we set the real part of the portion of the denominator in parenthesis equal to zero, we get 

the frequency for parallel resonance. 

 

𝑠2 + (
𝐶𝑚 + 𝐶𝑝

𝐿𝑚 ∙ 𝐶𝑚 ∙ 𝐶𝑝
) = 0 (4.5)  

𝜔𝑃𝑎𝑟𝑎𝑙𝑙𝑒𝑙 = √
𝐶𝑚 + 𝐶𝑝

𝐿𝑚 ∙ 𝐶𝑚 ∙ 𝐶𝑝
 =   

1

√𝐿𝑚 ∙ 𝐶𝑚
∙ √1 +

𝐶𝑚

𝐶𝑝
 =  𝜔𝑆𝑒𝑟𝑖𝑒𝑠 ∙ √1 +

𝐶𝑚

𝐶𝑝
   (4.6)  
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The series and parallel resonant frequencies correspond to totally different values for the 

crystal impedance, but these frequencies are typically very close because Cm is typically 

very small compared to Cp.  All crystals have a series and parallel resonant mode and the 

mode of oscillation depends how the crystal is hooked up in the circuit.   

The value of Rs has only a very slight impact on the oscillation frequency.  However, it does 

impact how sharp the cutoff is, which corresponds to the noise.  Below is an example of a 20 

MHz parallel resonance shown for Cp=5.4 pF, Cm = 0.02545 pF, Lm = 2.5 mH, and Rs at 

various values. 

 

 

Figure 4.4  Crystal Resonance 

  

Typical Parallel Crystal Circuit 

The crystal forms the parallel resonant of the circuit and the output of the inverter is used to 

drive the rest of the circuit.  C1 and C2 are the load capacitors, which are supplied externally 

to help stabilize the frequency and improve spurious emissions.  These values are effectively 

in parallel with Cp.  The series resonant frequency is not shifted, but the parallel resonant 

frequency is shifted closer to the resonant frequency as follows: 

 

𝜔𝑃𝑎𝑟𝑎𝑙𝑙𝑒𝑙 = 𝜔𝑆𝑒𝑟𝑖𝑒𝑠 ∙ √1 +
𝐶𝑚

𝐶𝑝 + (
𝐶1 ∙ 𝐶2
𝐶1 + 𝐶2)

   (4.7)  
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The load capacitors can also be used to slightly “pull” the crystal.  The capacitors can reduce 

harmonics and sometimes making C2 > C1 can help reduce them even further.  If harmonics 

are still an issue, the resistor, R, can optionally be added.   

 

 

Lm Cm

Cp

R

C1 C2

Rs

 

Figure 4.5  Parallel Crystal Oscillator 
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Common Types of Crystal Oscillators 

Frequency accuracies of ten parts in one million are not uncommon for crystal oscillators.  

The main cause of frequency error in these oscillators is drift over temperature.  The 

Temperature Compensated Crystal Oscillator (TCXO) has a temperature sensor and 

compensation to correct the crystal frequency over temperature.   This improves the frequency 

accuracy by about a factor of ten.  The Oven Controlled Crystal Oscillator (OCXO) improves 

the performance by approximately another factor of ten by having an oven heat the crystal to 

a constant temperature.   

 

Acronym Oscillator Type Accuracy Comments 

XO Crystal Oscillator 10 ppm This is a crystal plus the inverter. 

TCXO 

Temperature 

compensated crystal 

oscillator 

1 ppm 

Uses circuitry to compensate frequency 

over temperature, but sometimes this 

circuitry can add noise. 

VCXO 
Voltage compensated 

crystal oscillator 
10 ppm 

Like a crystal oscillator, but a voltage 

can be used to tune the frequency 

OCXO 
Oven controlled 

crystal oscillator 
0.1 ppm 

Uses an oven to maintain constant 

temperature 

 

Table 4.1 Common Types of Crystal Oscillators 

Conclusion 

The input source to the PLL can come from many sources such as another device or a crystal 

oscillator.   It typically needs to be clean and highly accurate in order to generate a good 

frequency at the output.  Aside from the noise and accuracy of the signal, one does need to be 

also mindful of the output format and slew rate.  In general, PLLs like to have a higher slew 

rate for the best phase noise and spur performance.   Differential inputs typically can have 

better phase noise as well. 
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Chapter 5      The Input Path and R Divider 
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Introduction 

Although the input path and R divider might not seem be the most complicated blocks of the 

PLL, they are still worthy of some discussion because the output of this block gets multiplied 

by the N divider to the output of the VCO.   If this block is noisy or if the input signal does 

not have a sufficient slew rate, then there can be degradations in the spurs and phase noise.  

When input frequency (fOSC) is a low frequency sine wave, this tends to lead to slower slew 

rates on the signal that can impact the performance of the PLL.  The input path can also be 

more sophisticated and include doublers and multipliers.   

 

Connecting to the Input (OSCin) Pin 

 

General Properties of the Input Pin 

The input pin to a PLL often has its own bias level and requires the signal to be AC coupled.    

The input pin to the PLL can be either differential or single-ended.    

 

PLLs with Differential OSCin Input 

Many PLLs offer a differential OSCin input.   If this is offered, the ideal way to drive this is 

differentially with a signal of high slew rate.   In the case that the input source is single-ended, 

one can either use a balun or AC couple the unused input to ground.   For optimal performance, 

some devices get better spurs if the impedance as seen looking from the OSCin pin is the same 

as looking outward from the OSCin* pin as shown in Figure 5.1 .  The likely reason for this 

is that any spurious noise on the ground gets tracked out better by the pins.    
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51 W

0.1 mF

OSCin*

OSCin

PLL
51 W 0.1 mF

fOSC

 

 

Figure 5.1  Driving a differential input as single-ended 

 

PLLs with Single Ended OSCin Pin 

For the case of a single-ended OSCin input and a single-ended source, it is typical to just a 

shunt 50 ohm resistor to ground.  This works if we assume that the driving source has 50 ohm 

output impedance, the amplitude is not too high, and the input impedance of the PLL is not 

too high.  If this is not the case, one can either use a series resistor or a resistive pad to correct 

for this. 

51 W

OSCin

PLL
0.1 mF

fOSC

 

 

Figure 5.2  Driving a PLL Single-ended 

 

Another situation that might come up is if the input signal is differential, but the input pin is 

only single ended.  One way to resolve this is to use a balun, but if this is undesired it is 

possible to just use one side of the differential output.  If the impedance presented to the OSCin 

pin is important, it is allowable to ground just one side of the differential output if it is AC 

coupled to the driver as shown in Figure 5.3 .  However, do not ground both sides as this will 

interfere with the differential termination. 
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51 W

OSCin

PLL
100 W 0.1 mF

fOSC

fOSC*

 

 

Figure 5.3  Driving a PLL Single-ended with a Differential Input 

 

R Divider Structure 

The R divider is typically designed with lower input frequency requirements and is often 

differentially done in CMOS or CML.  It is typically done with a series of flip-flops. 

 

Doublers and Input Multipliers 

Some devices offer programmable input multipliers to allow improvement to PLL phase noise 

or spurs.   However, one has to be aware that these blocks can add noise.   Doublers are easier 

to implement, so they often do not add noticeable noise.  Multipliers greater than two can add 

a significant amount of noise and the amount of added noise is device specific.   

 

The Importance of Slew Rate 

It is often the case that slew rate is important to the OSCin input pin.   The reason for this is 

that this gives the input signal greater noise immunity.  This noise can come in the form of 

phase noise or spurs.  It is also the case that sometimes the phase noise and spurs might come 

from inside the PLL.  In any case, the higher slew rate almost always is a benefit.   For a sine 

wave, higher slew rates come with higher amplitude and frequency.  At some point, the faster 

slew rate does not help, and a typical LVPECL, LVDS, or LVPECL signal has a sufficient 

slew rate. 

 

Conclusion 

The input path to the PLL is an important part to the PLL because if this is not connected 

correctly, it can lead to performance degradations in phase noise and spurs.  
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Chapter 6      The Phase Detector and Charge Pump 
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Introduction 

The phase detector is a device that converts the differences in the two phases from the N 

counter and the R counter into an output voltage.  This output voltage can either be applied 

directly to the loop filter or converted to a current by the charge pump.  The voltage phase 

detector is presented to support legacy literature, but the focus of this book is charge pump 

PLLs. 

 

The Modern Charge Pump vs. the Voltage Phase Detector 

The Voltage Phase Detector 

The voltage phase detector was the approach that was commonly used before the introduction 

of the charge pump and outputs a voltage proportional to the phase error between the outputs 

of the N and R dividers.  It can be implemented with a mixer, XOR gate, or JK flip flop.     

Perhaps the reason why the voltage phase detector lost popularity compared to the charge 

pump was that it was unable to attain and hold lock if the VCO frequency/phase was too far 

off from the target value unless acquisition aids or an active filter is used.   Floyd Gardner’s 

classical book, Phaselock Techniques, goes into great detail about all the details and pitfalls 

of this sort of phase detector and presents the following topology for active filters.   

Voltage

Phase

Detector
-A To VCO

R1

R2 C2

 

Figure 6.1  Classical Active Loop Filter Topology for a Voltage Phase Detector 
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Active filters require an op-amp, which add cost, area, current, and noise, and tend to be less 

popular unless the op-amp is necessary for some other purposes, such as providing a larger 

tuning voltage range to the VCO.  Although the voltage phase detector might have applications 

where it may be superior to the charge pump, it is far less common and therefore not discussed 

in much depth in this book. 

 

The Introduction of the Phase/Frequency Detector (PFD) and Charge Pump 

The phase/frequency detector (PFD) and charge pump combination has replaced the voltage 

detector in many designs because it has no issues with attaining and maintaining lock and 

requires no active components.  Referring to Figure 6.2 , the charge pump architecture may 

be different, but it mathematically achieves the same functionality as integrating an ideal op 

amp for the voltage phase detector.  The current can be thought of as the output voltage in 

Figure 6.1 divided by R1.   The charge pump PLL requires the additional component C1 in 

order to help filter the current pulses it outputs, but this component also provides additional 

filtering for spurs, which makes it a good idea to have anyways. 

Current

Charge

Pump
 

To VCO

R2

C2

C1

 

Figure 6.2  Passive Loop Filter with PFD and Charge Pump 

 

Phase Frequency Detector High Level Description 

The PFD compares the outputs of the N and R counters in order to generate a correction 

voltage, which is converted to a current (KPD) by the charge pump.  This book will treat the 

charge pump and PFD as one block because they are typically integrated together. 
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fR
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Figure 6.3  Phase/Frequency Detector with Charge Pump  
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Looking carefully at Figure 6.3 , observe the VCO gain is divided by a factor of s in order to 

convert the VCO output from frequency to phase.  The reason that this is done is that it makes 

more sense to model the PLL in terms of phases and not frequencies to help model the phase 

detector. If the frequency output is sought, then it is only necessary to multiply the transfer 

function by a factor of s, which corresponds to differentiation.   So, the phase-frequency 

detector not only causes the input phases to be equal, but also the input frequencies, as it is 

related to the phase. 

 

Phase Frequency Detector Structure and Theoretical Operation 

Simplified Structure of the PFD and Charge Pump 

R

Q

Q

R
Q

Q1

fN

fR

1
UP

DOWN

RESET

       

+Vcc

OUTPUT

Source 

Current

Sink 

Current

       

 

Figure 6.4  Phase/Frequency Detector and Charge Pump 

 

An implementation of the PFD and charge pump is shown in Figure 6.4  with fN representing 

the signal from the N divider and fR the signal of the R divider.   The circuit has the three 

possible states of the source current enabled, the sink current enabled, or both currents 

disabled.  However, the state of both currents enabled is not allowed because if both the UP 

and DOWN signals were high, it would reset the flip-flops and causing both switches to be 

open.   

The circuit in Figure 6.4  is said to have positive phase detector polarity because a positive 

phase error leads to a positive correction current.  On many PLLs, it is possible to invert the 

polarity of the phase detector so that the behavior between the sink and source currents is 

reversed.  When this is done, the phase detector is said to have a negative phase detector 

polarity.  This feature is often useful when using active filters.  
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Simplified Operation of the PFD 

Sink

KPD

Current

Tri-State

(High Impedance)

Source

KPD

Current

 

 

Figure 6.5  States Diagram of the Phase Frequency Detector 

 

 

A simplified time-averaged output of the PFD with respect to phase error between the N and 

R divider outputs   f  is shown below. 

 

2p 4p
0

-2p-4p

KPD

-KPD

f

KPD

 

Figure 6.6  Simplified Time-Averaged Output of the Phase Detector 

 

The PFD can lock to any phase error, but there are some performance considerations if the 

phase error is very small or if the phase error exceeds 2p.   These cases are discussed now.  
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Operation in the Linear Region -2p < | f | < 2p 

fR

fN

Charge

Pump
Tri-State

+KPD

-KPD

f

 

Figure 6.7  PFD Output for an Error Less than 2p 

 

 

Figure 6.6 shows the time averaged output of the phase detector.  The slope of this line,
PDK , 

corresponds to the time-averaged charge pump gain and can be calculated as follows: 

 

𝐾𝑃𝐷̅̅ ̅̅ ̅ =  
𝐾𝑃𝐷 − (−𝐾𝑃𝐷)

2𝜋 − (−2𝜋)
  =  

𝐾𝑃𝐷
2𝜋

   (6.1)  

 

For this equation, there is debate over the division by a factor of 2p.  Although it is technically 

correct to include this factor, it is typically left out because most calculations involve 

multiplying it by the VCO gain, which contains a factor of 2p to convert it from MHz/V to 

MRad/V.  Knowing that these will cancel, this book will use the practical definition of 

disregarding this factor rather than the academic version of this formula in order to simplify 

calculations and reduce the possibility for round off errors. 

 

𝐾𝑃𝐷̅̅ ̅̅ ̅ =  𝐾𝑃𝐷 ∙ ∆𝜙   (6.2)  
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Operation near the Dead Zone of the Linear Region 

When operating near zero phase error, the structure of the phase detector becomes more 

relevant and there is more interest in real-world features such unequal sink and source currents 

as well as the unequal turn on times of the sink and source currents.   To discuss this, Figure 

6.8 shows a more detailed diagram of the phase detector. 
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Figure 6.8  Detailed Phase Detector Drawing 

 

Figure 6.9 shows the impact of the non-zero turn on times of the sink and source currents as 

well as their mismatch. 

f

KPD

 

Figure 6.9  Non-Ideal Charge Pump Operating Near Zero Phase Error 
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Near zero phase error the nonzero turn on times of sink and source MOS devices significantly 

reduces the gain from the ideal value.  This area of operation of the phase is known as the 

dead zone.  In this region, the charge pump gain tends to be very low which makes the loop 

unable to suppress the VCO noise.  Furthermore, the phase detector can look nonlinear and 

lead to high phase noise and fractional spurs. The strategy in most PFD designs is to avoid 

this dead zone.    

There are some common strategies to deal with the dead zone.  One method is to introduce a 

bleed current that pulls the phase detector away from operating with zero phase error.  Another 

is to introduce a minimum on time for the phase detector to ensure that it operates away from 

a phase error that is too small, and a third is to introduce a small delay , to de-emphasize 

nonzero turn on times for the sink and source devices in the charge pump as shown in Figure 

6.10 . 

 

Ideal

No Delay

With 

Delay

Net Output 

With Delay

 

 

Figure 6.10  PFD with Delay to Reduce Dead Zone 

 

If the rise and fall times of the MOS devices are identical, then the total area under the curve 

will be identical to the ideal area provided the delay is longer than the turn on time of these 

MOS devices and that the phase error in question is greater than the rise time.   For purposes 

of comparing the phase error, express in terms of absolute time, not a phase error. 

Δ𝑡 =  𝐾𝑃𝐷 ∙
∆𝜙

2𝜋 ∙ 𝑓𝑃𝐷
   (6.3)  
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Rtt   )tsgn(2/tKtK RPDPD  -  tKPD   

Table 6.1 Charge Injected for Phase Error of t 
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Operation Out of the Linear Region, | t |   tR:  

 At first glance, it may seem absurd to talk about a phase greater than 2p, but what this really 

means is that one counter is having more rising edges than another, which typically implies 

that the inputs to the phase detector are not the same frequency and the PLL is not in lock.       

In this case, the PFD does put current in the correct direction, but the magnitude does not track 

the phase error.  Two phenomena of interest in this situation are cycle slipping and the time-

averaged duty cycle of the phase detector. 

 

Cycle Slipping 

When one of the rising edges of one of the inputs to the phase detector does not get counted, 

this is known as a cycle slip.  One situation where this comes up is if the N divider is changed 

abruptly to change the VCO frequency and the input frequencies to the phase detector are 

therefore different. This causes degradation in the lock time.   
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Pump
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Figure 6.11  Cycle Slip Example Assuming 0 Hz Loop Bandwidth 

 

Figure 6.11  shows situation when the N divider is abruptly changed to a higher value in order 

to direct the VCO to a higher frequency.   As the duty cycle increases, eventually one cycle 

of the R divider is not counted, which causes the duty cycle of the charge pump to go back to 

a lower state.  This is known as a cycle slip.   The PFD does recover, but this increases the 

lock time.  If the loop bandwidth is wide enough, the PLL can track this before the cycle slip 

happens, but this depends on the ratio of the phase detector frequency to the loop bandwidth.   

In order to calculate the time to the first cycle slip, it is necessary to find the time when the 

faster counter will get one cycle ahead of the slower divider.  For instance, if the N divider 

output was faster than the R divider output, the equation would be as follows. 

 

(t + 1) ∙ 𝑓𝑅 = 𝑡 ∙ 𝑓𝑁   (6.4)   
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If it was the case that the R divider output frequency was higher, then just switch the 

frequencies around.  Solving these equations gives the following conditions for the first cycle 

slip. 

𝑡 ≥

{
 
 
 

 
 
 
     ∞                               𝑓𝑁 = 𝑓𝑅

  
𝑓𝑅

𝑓𝑁 − 𝑓𝑅
                        𝑓𝑅 < 𝑓𝑁

  
𝑓𝑁

𝑓𝑅 − 𝑓𝑁
                      𝑓𝑅 > 𝑓𝑁
                 

  

  

(6.5)  

Calculation of Duty Cycle When Inputs Differ in Frequency 

If two inputs to the phase detector differ in frequency, there are situations when the duty cycle 

of the phase detector would be of interest.  One such situation would be if one was to construct 

a lock detect circuit.   In order to calculate the duty cycle, make the simplifying assumption 

that loop bandwidth is wide enough to avoid cycle slipping.  Also, without loss of generality, 

one can assume that the R divider output is greater than the N divider.  If not, then swap the 

names and do the same analysis.  Finally, assume that both the R and N dividers start off in 

phase.  Under these assumptions, the phase at the output of the R divider after one cycle would 

be: 

 

𝜙𝑅 = 𝑓𝑅 ∙ (
1
𝑓𝑅
⁄ ) = 1   (6.6)  

 

The phase at the output of the N divider after this same period of time can also be calculated. 

 

𝜙𝑁 = 𝑓𝑁 ∙ (
1
𝑓𝑅
⁄ ) =  

𝑓𝑁
𝑓𝑅
⁄    (6.7)  

 

Assuming the magnitude of the phase error does not exceed 2p, the time-averaged phase error 

of the PFD, expressed in cycles (not radians), can be calculated as: 

 

Δ𝜙̅̅ ̅̅ =  

{
 
 

 
 1 − 

𝑓𝑁
𝑓𝑅
⁄             𝑓𝑁 ≤ 𝑓𝑅

1 − 
𝑓𝑅

𝑓𝑁
⁄             𝑓𝑁 > 𝑓𝑅

  (6.8)  
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As the ratio becomes infinite, the duty cycle approaches 100%.  If the ratio of the input 

frequencies is two, then the duty cycle is 50%.   For ratios above 2, it makes no difference if 

we assume there is cycle slipping or not.  However, for ratios below two, assuming a 0 Hz 

bandwidth as opposed to no cycle slipping does make a difference. 

 

 

Figure 6.12  Duty Cycle of the PFD for Inputs of Unequal Frequency 

 

For purposes of measuring the charge pump current, it is important to be aware of this duty 

cycle.   Even if the ratio of these frequencies is ten, still the duty cycle of the charge pump is 

only 90%.  The best way to do this is to remove the input to the N counter completely and set 

the N counter value to the maximum value.  Theoretically, the N counter value should not 

matter, but if there is no signal there, there could be some self-oscillation at this pin.  To see 

the sink current, invert the polarity of the phase detector. 

 

The Continuous Time Approximation 

It greatly simplifies calculations to model the charge pump current as a continuous current 

with a magnitude equal to the time-averaged value of these currents from the charge pump.  

However, the phase/frequency detector technically puts out a pulse width modulated signal 

and not a continuous current.  This approximation is referred to as the continuous time 

approximation and is valid provided that the loop bandwidth is no more than about one-tenth 
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of the phase detector frequency.  Reference [2] goes into the justification for this result.   In 

practice, one will start to see the loop go unstable when the loop bandwidth reaches about 

one-third of the phase detector frequency and would probably never want to exceed one-fifth 

the phase detector frequency to avoid any issues.  Between one-tenth and one-fifth, the PLL 

will probably still lock, but the performance may be degraded.  Specifically, increasing the 

loop bandwidth beyond one-tenth of the phase detector frequency might not yield the expected 

improvement in lock time.  Also, spurs might have a cusping effect due to this sampling.  If 

the loop bandwidth is less than about 1/100th of the phase detector frequency, then the lock 

time could be degraded due to cycle slipping, which will be discussed in a later chapter.   It 

will also be shown in a later chapter why the discrete sampling action of the phase detector 

causes the phase detector to get noisier at higher phase detector frequencies. 

 

Conclusion 

This chapter has discussed the PFD (Phase Frequency Detector) and has given some 

characterization on how it performs for different types of inputs.  It is important to also 

remember that most of the time that this book refers to the PFD, it is meant to also include the 

charge pump.  When reference to the charge pump are given, they refer to the part of the PLL 

that is sinking or sourcing the current.  Also, the gain of the PFD in this book will be defined 

as the charge pump gain.  Other references may divide by a factor of 2p, but it is commonly 

done so in industry as this factor gets cancelled out by another factor of 2p in the VCO gain. 
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Chapter 7      The Loop Filter 
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Introduction 

The loop filter is a low pass filter that translates the charge pump output current into a tuning 

voltage for the VCO.  However, not just any old low pass filter will do.   The loop filter 

transfer function is  part of the entire closed loop PLL which also includes the N divider value, 

charge pump gain, and VCO gain.   This closed loop transfer function has a profound impact 

on PLL switching speed, spurs, phase noise, and stability.  There are many chapters in this 

book devoted to just loop filter design, so this chapter gives just a brief overview of loop 

filters. 

 

Loop Filter Structure 

A loop filter can be implemented with resistors and capacitors and a simple one is shown in 

the following figure.    

 
To VCO
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C1

Charge 

Pump 

Output

 

Figure 7.1  Typical Loop Filter 

 

The transfer function for this loop filter in this case is simply the impedance of the loop filter 

which can be written as follows: 

 

𝑍(𝑠) =  
1 + 𝑠 ∙ 𝐶2 ∙ 𝑅2

(𝐶1 + 𝐶2) ∙ 𝑠 ∙ (1 + 𝑠 ∙
𝐶1 ∙ 𝐶2 ∙ 𝑅2
𝐶1 + 𝐶2 )

 =  
1 + 𝑠 ∙ 𝑇2

𝐴0 ∙ 𝑠 ∙ (1 + 𝑠 ∙ 𝑇1)
   (7.1)  
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The zero, T2, is always necessary for stability of the system and there are also poles at zero 

and T1.   In the case of a charge pump PLL, it is necessary to have the pole, T1.  Without this 

pole, the sharp corrections of the charge pump would theoretically be directly converted to a 

voltage by the resistor R2 and cause huge voltage swings to the VCO input, which would lead 

to high phase noise and spurs.  In reality, the VCO has an input capacitance that would act as 

capacitor C1 to lessen this effect, although it is not good practice to depend on it.  Additional 

poles may be added to improve the ability to filter noise at farther offsets.  The loop filter 

order is defined by the number of poles in the loop filter. 

 

R3

R2

C2

 

C1 C3

 

Figure 7.2  A Third Order Loop Filter 

 

The Loop Filter Transfer Function  

The generalized loop filter transfer function is defined as the output voltage at the VCO 

divided by current injected by the PLL charge pump and is shown by the following expression. 

 

𝑍(𝑠) =  
1 + 𝑠 ∙ 𝑇2

𝐴0 ∙ 𝑠 ∙ (1 + 𝑠 ∙ 𝑇1) ∙ (1 + 𝑠 ∙ 𝑇3) ∙ (1 + 𝑠 ∙ 𝑇4)
  (7.2)  

 

The pole, T2, and the zero, T1, are required.  The poles T3 and T4 are optional and can be set 

to zero if they are not used.  The order of the loop filter is defined by the number of poles it 

has, including the pole at zero.   So the loop filter in Figure 7.2  is considered a third order 

loop filter, since it has a pole at zero, T1, and T3. 

 

Passive and Active Loop Filters 

In general, it is ideal to implement the loop filter with just resistors and capacitors for the 

reasons of cost and noise.  However, in some situations, there may be reasons to use an active 

device such as an op-amp.  The most common reason for this is when the charge pump cannot 

put out a high enough voltage.  In either case, the analysis for such filter is the same using the 

poles and zeros of the transfer function. 
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Degenerate Loop Filters 

Degenerate loop filters are ones that have zero valued components.  This can be unintentional 

or intentional.  One common situation when they may unintentionally arise is with partially 

integrated loop filters.  One occurrence of this is when the filter has fixed component values 

for the higher poles formed by C3, C4, R3, or R4 and one tries to design for a loop bandwidth 

that is wider than possible.   In this case, it can sometimes lead to a case where the capacitor 

C1 is zero.   

 

R3

R2

C2

 

Open C3

 

Figure 7.3  Degenerate 3nd Order Loop Filter 

. 

In other situations, degenerate filters are intentionally created.  One good reason for this is 

when one wants the board layout to accommodate different possibilities by putting a fourth 

order filter layout and then using zero value components if the extra poles are not needed.  In 

Figure 7.4 , the capacitance for C1 has been distributed between its normal spot and also a 

spot closer to the VCO.  In some situations, this could yield better performance if the footprint 

on the PCB for C4 is much closer to the VCO than the footprint for C1.   
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C4C1

0 W
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R4R3
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Figure 7.4  Degenerate 4th Order Loop Filter 

 

For the purposes of defining these filters, they will be named based on the number of poles 

that they have, including the one at zero.  For instance, Figure 7.3 is considered a 2nd order 

filter because it has two poles, but will be called a degenerate 3rd order filter because this is 

what it would be if the components were not all non-zero.  Figure 7.4 is considered a 2nd order 

filter, but a degenerate 4th order filter. 
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Conclusion 

The loop filter is key to the performance of the PLL system and has a lot of degrees of 

flexibility for one to design.  The loop filter can have different orders; this book assumes that 

it can be of order two, three, or four.  There is no one loop filter that is right for every 

application as it involves performance trade-offs.  Later chapters will cover the characteristics 

of the loop filter in much greater depth.  
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Chapter 8      Voltage Controlled Oscillators 
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Introduction 

The voltage controlled oscillator (VCO) generates a frequency based on the input voltage; it 

can be thought of as a voltage to frequency converter.  Although the principles of oscillators 

have already been covered and apply to voltage controlled oscillators, there are more details 

specific to VCOs that are worthy of study.  This chapter discusses the performance 

characteristics of the VCO and then follows it up with the structure and implementation. 

 

VCO Performance Characteristics 

Frequency and Tuning Range 

The range of frequencies that a VCO can produce is perhaps the most critical and relevant 

parameter for the VCO.  A wider frequency range is always desirable, but this comes at the 

expense of phase noise.  The minimum frequency is defined to be fVCOmin and is produced by 

an input voltage of VTuneMin.  The maximum frequency is defined to be fVCOmax and is produced 

by an input voltage of VTuneMax.  For some VCOs, going below the minimum tuning voltage 

can degrade the performance, or cause the VCO to not oscillate at all.  The VCO frequency 

changes as a function of supply voltage, process, and temperature, so the guaranteed frequency 

range that is typically specified in a manufacturer’s datasheet will typically be narrower than 

the actual range of the VCO.   

 

VCO Gain 

The gain of the VCO, KVCO, is expressed in MHz/V and is how much the output frequency 

changes for a change in the input voltage. It is desirable for this to be constant over the VCO 

tuning range and if this is assumed this can be calculated as follows:  

 

𝐾𝑉𝐶𝑂 =
𝑑𝑓𝑉𝐶𝑂
𝑑𝑉𝑇𝑢𝑛𝑒

 ≈  
𝑓𝑉𝐶𝑂𝑚𝑎𝑥 − 𝑓𝑉𝐶𝑂𝑚𝑖𝑛
𝑉𝑇𝑢𝑛𝑒𝑀𝑎𝑥 − 𝑉𝑇𝑢𝑛𝑒𝑀𝑖𝑛

   (8.1)  
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The VCO gain can be calculated from measured by taking the slope of the tuning curve.  If it 

is constant, then it can be calculated for the whole range. If not, it can be calculated by 

calculating the slope of the tuning curve in a small range about each VTune voltage or by 

breaking up the VCO tuning range can be broken up into several regions.  The VCO gain has 

a significant impact on the closed loop transfer.  If this gain changes significantly, by say a 

factor of 1.5 or more, it can throw the loop dynamics off.  It is often possible to compensate 

for this with the charge pump gain. 

 

Supply Voltage, Pushing, and Power Supply Noise Rejection 

The supply can impact the performance of the VCO.   Pushing refers to how much a change 

in voltage at the power supply pins of the VCO impacts the output frequency and is typically 

measured in MHz/V.  It is generally desirable to have this pushing to be lower.  The first 

reason is that if there is an abrupt change in voltage, it could cause a glitch in the VCO 

frequency which would then need to settle out.  The other reason is that any noise voltage on 

the power supply pins gets multiplied by pushing goes to the output of the VCO.   If the gain 

at this pin is high, then the noise at the output of the VCO will be worse. 

 

Pulling 

Pulling refers to how much the VCO frequency will shift when a load is placed on the output.  

One example of where this can be an issue is in a circuit when the power amplifier is first 

turned on.  This changes the load presented to the VCO and can cause a frequency disturbance 

that needs to settle out. 

 

Harmonics 

VCOs generate harmonics, which occur at a multiple of the out frequency.  In general, these 

are considered undesirable.   The first exception to this is if the desired output is a square 

wave, which is very rich in odd harmonics.  The other exception is when one wants to 

intentionally lock the PLL to one of these harmonics in order to get a higher frequency.  In 

this case, a higher harmonic of the VCO is intentionally used as the intended signal.  The 

drawback of this approach is that a lot of power is sacrificed. 

 

Other Issues with VCOs 

• Output power can vary with frequency, voltage, and temperature. 

• VCO gain can vary with frequency, voltage, and temperature. 

• VCO  tank circuit can interact with loop filter if there is insufficient isolation 

• Some VCOs may have high leakage currents, especially if their minimum tuning 

voltage is violated. 

• Some VCOs may not oscillate if the tuning voltage is 0 V. 

• VCOs typically have an input capacitance, which adds in to the loop filter. 

Typically this is the varactor diode and whatever is in parallel with this.   
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Relating the VCO to a Pendulum 

 Although the concept of an amplifier with a filter in the feedback path does apply to a VCO, 

this is a hard way to visualize the VCO.  This is because transistors and FETs do not deal 

strictly with voltage gains.   To better understand VCOs, it is easier to think of them as a tank 

circuit and amplification circuitry.   

 

VCO Tank Circuits 

The tank circuit consists of an inductor and a capacitor and has many analogies to the 

pendulum.  In the pendulum, the energy changes from potential to kinetic.  For the tank circuit, 

the energy changes from the magnetic field in the inductor to the magnetic field in the 

capacitor plates.  This can be thought of as an electronic spring, or others compare it to a 

pendulum. 

 

L
C

 

Figure 8.1  Comparison of a VCO Tank Circuit to a Pendulum 

 

 

Characteristic Conservation of Energy Frequency 

Pendulum 𝑚 ∙ 𝑔 ∙ 𝑙 ∙ 𝑠𝑖𝑛𝜃 + 
1

2
 ∙ 𝑚 ∙ (𝑑𝜃 𝑑𝑡⁄ )

2

= 𝐸 √ 
𝑔

𝑙
   

Tank Circuit 
1

2
 ∙ 𝐶 ∙ 𝑉2 +

1

2
 ∙ 𝐿 ∙ 𝐶2 ∙ (𝑑𝑉 𝑑𝑇⁄ )

2

= 𝐸 
1

√𝐿 ∙ 𝐶
   

Figure 8.2  Tank Circuit and Pendulum Equations Assuming no Losses 

 

When the voltage is maximized in the tank circuit, the energy stored in the capacitor is 

maximized and the energy stored in the inductor is zero.  When the voltage is minimized, the 

capacitor has no energy, and the inductor has a maximum amount of energy in its magnetic 

field.  The reason that this is called a tank circuit is that the energy inside sloshes between the 

inductor and the capacitor. If there were no parasitic resistances, this circuit could continue 

forever. This is very similar to the pendulum, where the potential energy is maximized, and 

the kinetic energy is zero when the pendulum is at its highest position.  Likewise, when the 
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pendulum is at its lowest position, the potential energy is minimized, and the kinetic energy 

is maximized; the pendulum is moving at maximum speed at this time.  However, there are 

resistances, so amplification is needed to sustain the oscillation. 

 

Implementation of Amplifier 

The traditional oscillator model of an amplifier and a delay in the feedback path is intuitive 

and easy to understand.  However, a typical high frequency VCO does not typically use a 

voltage amplifier, but rather uses transistors devices with current gains.   It is easier to 

visualize the principles of operation of this sort of oscillator as a tank circuit with some active 

circuit to sustain the oscillation.  The basic idea is that the full voltage of the tank circuit drives 

the amplifier, but the output of the amplifier is lightly coupled to the tank circuit so as not to 

disturb the natural oscillations of the circuit.  Aside from coupling in the amplified signal to 

the tank, the coupling network is also actually part of the tank as well.  In Figure 8.3 , 

capacitors C1 and C2 form the coupling network. 

 

VCO Structure 

Oscillator Topologies 

The common types of VCOs are Colpitts, Clapp, and Hartley.   The thing that makes them 

different is how the output of the amplifying device is applied to the tank circuit.   

In the Colpitts design, there is a capacitive divider that forms part of the resonant capacitance 

to which this is applied.   
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Figure 8.3  Colpitts Oscillator and Its Tank Circuit 
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Figure 8.4  Clapp Oscillator and its Tank Circuit 

 

The Clapp oscillator is very similar to the Colpitts oscillator, except for the fact that there is a 

series capacitor, C3 in this case, added in series with the inductor.  It also goes by the name 

of Clapp-Gouriet and Series Tuned Colpitts Oscillator. 
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Figure 8.5  Hartley Oscillator and its Tank Circuit 

 

In the Hartley oscillator, the feedback from the amplifier is applied to the inductor.  To 

implement this, there are two inductors, and the voltage is applied between them.  The sum of 

the two inductors forms the total inductance.     
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The Varactor Diode 

The concept of the tank circuit has been discussed, but the circuits are only designed to operate 

at a single frequency; no mention has been made of what makes it possible to adjust the 

frequency.  For the VCO, the varactor diode is the component that does this.  It is a reverse 

biased diode that has a junction capacitance between the P and N junctions.  Between these 

two junctions, there is a depletion layer.  The width of this depletion layer widens as the 

reverse voltage across the diode increases.  Recall that for two parallel plates, the capacitance 

is inversely proportional to the distance between the plates.  This situation applies to the 

varactor diode. As the voltage is increased, the capacitance becomes less in accordance with 

the following equation. 

 

𝐶𝑉𝑎𝑟𝑎𝑐𝑡𝑜𝑟(𝑉) =  
𝐶𝑉𝑎𝑟𝑎𝑐𝑡𝑜𝑟(0)

(1 + 𝑉 𝛼⁄ )𝛾
   (8.2)  

 

CVaractor(V) is the capacitance of the varactor diode, CVaractor(0) is the diode capacitance 

specified at a zero volts.    is the diode potential voltage, V is the voltage applied, and  is an 

exponent that is typically on the order of 0.5.   For instance, here is some data for the 1SV229 

varactor diode as modeled from the datasheet with CVaractor(0) = 24 pF,  =2.8, and =0.9. 

 

Figure 8.6  Varactor Diode Capacitance for 1SV229 Diode 
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The varactor diode typically is placed in parallel with one of the capacitors in the tank circuit.  

Maximum tuning range is attained if the varactor diode completely replaces a capacitor, 

however the phase noise is typically better there is some capacitance in parallel with the 

varactor diode.  This is because the quality factor of a fixed value capacitor is typically higher 

than that for the varactor.  There are many techniques for reducing the noise due to the varactor 

diode, such as putting multiple ones in parallel, which divides their noise resistance. 

  

Oscillation Frequency Calculation 

The theoretical oscillation frequency can be found once circuit inductance and capacitance are 

found.  The value for the circuit inductance, L, is straightforward to calculate.  The 

capacitance, CEquivalent, is easier to find if one first simplifies the circuit by removing the 

amplifier and bias circuitry.  The grounds can also be removed because the frequency is the 

same everywhere in the tank, so the placement of the ground can be ignored.   This is done in 

Figure 8.3 , Figure 8.4 , and Figure 8.5 . 

 

Oscillator Type 
Equivalent 

Inductance 
Equivalent Capacitance 

Colpitts  L 

1

1
𝐶1 + 

1
𝐶2 + 𝐶𝑉𝑎𝑟𝑎𝑐𝑡𝑜𝑟

 

Clapp  L 

1

1
𝐶1 + 

1
𝐶2 + 

1
𝐶3 + 𝐶𝑉𝑎𝑟𝑎𝑐𝑡𝑜𝑟

 

Hartley  L1 + L2 𝐶1 + 𝐶𝑉𝑎𝑟𝑎𝑐𝑡𝑜𝑟 

Table 8.1 Resonant Component Calculations 

 

The varactor diode capacitance typically adds to one of the capacitances, C1, C2, or C3.  Be 

aware that there are many different oscillator topologies and this formula for the equivalent 

capacitance is only good for the topologies shown in the examples. The theoretical oscillation 

frequency is given by: 

 

𝑓𝑉𝐶𝑂 = 
1

2𝜋√𝐿 ∙ 𝐶𝐸𝑞𝑢𝑖𝑣𝑎𝑙𝑒𝑛𝑡
   (8.3)  

 

Due to parasitic capacitances on the order of a few pF from the board and the transistor, the 

oscillation frequency can be lower than theoretically predicted.    
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VCO Example 

For an example, consider the following VCO circuit, which is a Colpitts style oscillator.  The 

only thing different is the series 1000 pF capacitor to keep the bias voltage of the transistor 

and VCO tuning voltage from fighting. 
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8
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VTune
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Figure 8.7  VCO Circuit Example 

 

Using the analysis for frequency and comparing this to an actual measurement, we see that 

the measure frequency is lower than the simulated frequency as shown in Figure 8.8 .  The 

most likely explanation is parasitics.  For instance, if one adds 2.5 pF to the equivalent 

capacitance, then there is a much better agreement between the measured and simulated 

frequencies.  However, this shifts the VCO gain simulation a little off from the measurement.  

The best match between simulation and measured result is obtained by modeling this with an 

inductance value of 73 nH instead of 56 nH which matches the VCO frequency and gain very 

nicely.  It may be hard to justify doing this although this VCO was done discretely on a PCB 

and perhaps some of the inductance could be due to the PCB trace length. 
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Figure 8.8  VCO Frequency Simulation 

 

The gain can also be calculated.   Note that at higher frequencies, the VCO gain drops off.  

This is typical of VCOs because the varactor diode capacitance change tends to be 

overwhelmed by other capacitances when it is lower, which is the result of a higher tuning 

voltage. 

 

 

Figure 8.9  VCO Gain Simulation 
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Types of VCOs 

So far, the resonant circuit of the oscillator was implemented with an inductor(s) and 

capacitors.  However, there are many ways that resonant circuits can be implemented. 

 

Circuit Type Resonant Circuit Tuning Range 
Phase 

Noise 

RC Oscillator Resistor and Capacitor Wide Poor 

Standard 

LC VCO 

Inductor(s) and 

Capacitor(s) 
Wide Fair 

Stripline VCO Microstrip Wide Fair 

SAW (Surface Acoustic 

Wave) Oscillator 
SAW Filter Narrow Excellent 

VCXO (Voltage 

Controlled Crystal 

Oscillator) 

Crystal Very Narrow Best 

CRO (Ceramic Resonator 

Oscillator) 
Ceramic Wide Excellent 

DRO (Dielectric 

Resonator Oscillator) 
Dielectric Wide Excellent 

YIG Oscillator YIG Sphere Very Wide Good 

Silicon VCO 
Bond Wires, Internal Spiral 

Inductor, or External  
Very Wide Fair 

Table 8.2 Different Types of Oscillators 

 

Silicon VCOs 

“I bought my last canned VCO.” – Anonymous 

 

Introduction 

One VCO type that is worth special attention is the silicon VCO.  VCOs integrated on 

semiconductor chips can have the advantages of lower cost, smaller area, wider tuning range, 

programmable output dividers, and programmable output power.  Silicon VCOs can achieve 

good phase noise and wide tuning range by switching in different resonant elements for 

different frequencies.  This allows the frequency band to be broken up into smaller sub-bands, 

therefore reducing the VCO gain which in turn leads to better phase noise.  The key elements 

of silicon VCOs are an inductive element, capacitor bank, and calibration circuitry.  
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Creating the Inductive Element 

Silicon VCOs are typically LC oscillators and the inductance needs to be formed some way.  

The three common methods are to allow the user to use an external inductor, use the bond 

wires of the package, or use spiral inductors on the silicon die.  External inductors give good 

flexibility to the user, but tend to be more limited in frequency since the bond wires also add 

inductance, that can be on the order of 1 nH.   Bond wire inductors give flexibility to the 

manufacturer to tune the frequency, but also need to be tightly controlled in process or the 

VCO will have to tune much wider than is guaranteed in the datasheet.  Spiral inductors are a 

popular method used and lend themselves well to allowing multiple inductor values which 

will be called cores to be selected between.  If the element is bond wire or spiral inductor on 

silicon, the VCO frequency tends to be higher because it is harder to get larger inductor values 

on silicon or with bond wires.  In some VCOs, it is necessary to use multiple inductors to get 

the required tuning range.  In this case, multiple VCO cores can be created by having several 

different inductors switched in. 

 

Capacitor Bank 

The capacitance of the resonant circuit for the silicon VCO is typically formed with a varactor 

diode, fixed capacitance, and a bank of switchable capacitors.   The switched capacitor bank 

allows the VCO to divide the total bandwidth into several smaller bands, thus effectively 

reducing the VCO gain and improving phase noise.   In the switched capacitor bank, the switch 

resistance may add some noise, so sometimes a fixed capacitance is used to improve the phase 

noise, although it sacrifices some VCO tuning range.   

CFixed

C 2C 4C 8C

CVaractor

 

Figure 8.10  Typical Switched Capacitor Bank for a VCO 

 

VCO Digital Frequency Calibration 

Silicon VCOs that divide the frequency range into several different bands need a method to 

determine which frequency band to use.   This sometimes is done manually by the user pulling 

pins high or low, but this does not work well for a large number of bands.  It is more common 

for this calibration to be done automatically by the PLL device when the frequency is changed.  
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Automatic calibration is often typically transparent to the user and runs through various 

combinations of the capacitors and inductor cores to determine the combination that best 

centers the VCO frequency.  The most fundamental method is to internally force the VCO 

tuning voltage to a fixed voltage and then search through the different capacitor combinations 

to find the most optimal one.  The method to find the most optimal capacitor bank combination 

can be just a linear search that increments or decrements the capacitor bank value by one at 

each step, or a divide and conquer approach.  For the divide and conquer approach, the 

capacitors are in the relative values of 1, 2, 4, 8, 16, and so on.  Initially, the largest capacitor 

is switched in.  If the achieved frequency of the VCO is higher than the target frequency, then 

the next largest capacitor is switched in.  Otherwise, the largest capacitor is switched out, and 

the second largest capacitor is switched in.  The frequency error in each step is half of what it 

was in the previous step.  This process is repeated until the value of the smallest capacitor is 

set.  Sometimes another calibration is run after the frequency calibration to optimize the phase 

noise.    

Aside from finding the best frequency band, some silicon VCOs also use digital techniques to 

optimize phase noise. These routines are often run after the frequency calibration in order to 

get the best settings for the particular frequency band of interest.  This phase noise calibration 

has the advantage that the settings can be optimized to account for changes in process, 

temperature, and frequency. 

The circuitry that runs the calibration circuitry is typically run by a state machine clock that 

is derived by the OSCin frequency.  If this frequency is too fast for the circuitry to run reliably, 

it is divided down.  If it is too slow, it typically slows down the time it takes for the VCO to 

calibrate, that may or may not be an issue for the application. Figure 8.11 shows a divide and 

conquer frequency calibration followed by another phase noise calibration. 

 

 

Figure 8.11  Silicon VCO Using a Divide and Conquer Approach 
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After the VCO calibration is done, the VCO is allowed to settle to the final frequency in analog 

mode.  The challenge with the divide and conquer approach happens when the target 

frequency lies close to the border frequency between two capacitor codes.  For this reason, 

and to allow for temperature drift, the frequency ranges covered by each capacitor code must 

have some overlapping with the others.  There are also other methods of dealing with this 

issue as well. 

 

Output Dividers 

One very common practice with integrating VCOs on silicon is to follow it up with a divider.  

This also greatly extends the frequency range of the device and also is done because on-chip 

inductors tend to be smaller, which implies higher VCO frequencies.   

 

Conclusion 

This chapter has discussed the architecture and common types of VCOs and has gone over 

some of fundamental concepts to understand how the VCO works.  Many VCOs are 

commercially available and can be bought in a module.  In general, higher frequency VCOs 

are more challenging and it is more common practice to buy these in module or integrated 

form. 
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Appendix A: A Closer Look at a Clapp Oscillator 

VTune

CTune

C2

C1

C3

L

Vcc

R
2

R
1

C4

C5

R5

R
3

R
4

 

 

Component Primary Purpose Value 

CVtune 
Varactor Diode, which is a voltage variable 

capacitance 

32 pF ( @ 0 V ) 

15 pF ( @ 2 V ) 

12.5pF ( @ 3V ) 

L Inductor for the Tank 56 nH 

C1 Couples Output into Tank and forms part of 

resonant tank.  

27 pF 

C2 27 pF 

C3 
Helps improve phase noise due to varactor diode 

resistance by adding in parallel to varactor. 
Open 

C4 
Forms a DC block, so the tuning voltage does not 

fight the transistor bias level. 
100 pF 

C5 

Works with R5 to prevent noise from VCO from 

exiting out through the tuning voltage.  Especially 

important for a VCO module. 

Open 

R1 

Transistor Biasing 

10 kW 

R2 8.2 kW 

R3 10 kW 

R4 75 W 

R5 

Isolates VCO tank circuit from the loop filter so 

that the loop filter capacitance will not shift the 

VCO frequency. 
10 kW 
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Impact of Components on VCO Frequency 

For this tank circuit, there are two additional components: the varactor diode and C4.  The 

simplified tank circuit is shown below. 

 

CTune

C2

C1

C3

C4

L

 

Figure 8.12  Simplified Tank Circuit 

 

In order to better understand the impact of the components on this VCO Frequency, it was 

theoretically calculated assuming that the parasitic capacitance was zero.  Then components 

were changed, and the parasitic capacitance was calculated under these different 

circumstances to see how much it changed.  The theoretical VCO frequency was calculated 

from the following formulae: 

 

𝑓𝑉𝐶𝑂 = 
1

2𝜋√𝐿 ∙ 𝐶𝐸𝑞𝑢𝑖𝑣𝑎𝑙𝑒𝑛𝑡
   (8.4)  

 

𝐶𝐸𝑞𝑢𝑖𝑣𝑎𝑙𝑒𝑛𝑡 = 
1

1
𝐶1 + 

1
𝐶2 + 

1
𝐶3 + 𝐶𝑡𝑢𝑛𝑒

+ 
1
𝐶4

   
(8.5)  

 

The impact of C4 on frequency is very small, but it is easy to account for it, since it is just in 

series with the other capacitors.  Note that in a string of series capacitors, the smallest capacitor 

value dominates.   

Table 8.3 shows the result of changing the capacitors and inductor for the VCO and comparing 

the theoretical and actual results.   
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C1 C2 C3 L Measured Frequency 

Theoretical 

Frequency 

(CPar=0) 

CPar 

pF pF pF nH Min VTune =2V Max VTune =2V pF 

#1 27 27 Open 12 385.3 430.3 445.3 564.1 4.8 

#2 27 27 Open 56 204.8 227.8 235.2 261.1 2.1 

#3 27 27 Open 120 139.8 155.1 160.0 178.4 2.1 

#4 27 27 10 56 194.1 205.4 208.5 230.5 2.2 

#5 15 150 Open 56 204.7 226.2 233.3 260.5 2.2 

#6 18 56 Open 56 203.3 226.3 233.7 260.5 2.2 

Table 8.3 Actual vs. Theoretical VCO Frequencies 

 

The value for the parasitic capacitance, CPar, can be extrapolated by comparing the theoretical 

and measured operating frequencies via the formula: 

 

𝐶𝑃𝑎𝑟𝑎𝑠𝑖𝑡𝑖𝑐 = 
1

(2𝜋 ∙ 𝑓𝑀𝑒𝑎𝑠𝑢𝑟𝑒𝑑)2 ∙ 𝐿
 −  𝐶𝐸𝑞𝑢𝑖𝑣𝑎𝑙𝑒𝑛𝑡   (8.6)  

 

Once the parasitic capacitance was extrapolated when the varactor was at a fixed frequency 

of 2 volts, then the frequency range of the VCO could be calculated.  In order to measure the 

extreme frequencies of the VCO, it was tuned to frequencies far above and below its tuning 

capabilities, and the actual frequency achieved was noted. 

The first thing to note is that the calculated value for the parasitic capacitance is very constant, 

except for the first row, where this is higher frequency, but there could be other factors such 

as the inductor value changing.  It is not shown in the table, but the minimum and maximum 

frequencies can also be predicted with textbook accuracy. 

The first three lines of the table show the impact of changing the inductor value.  Note that 

the absolute tuning range goes up with frequency but remains roughly constant as a 

percentage.  Comparing the fourth line to the third line, we see the impact of adding a 

capacitance in parallel with the varactor.  This greatly reduces the tuning range, but will be 

shown later to improve phase noise slightly in the 1/f2 region, as Lesson’s equation would 

theoretically predict. 

The last two lines deal with the coupling capacitors in the tank.  They were chosen to keep 

their series value roughly constant, and the frequency does not shift as one would theoretically 

expect.   

When the output frequency is high, then there are other effects that cause the calculated 

parasitic capacitance to be higher.  For the second and third lines, and for the rest of the table, 

there is textbook agreement.  This shows how powerful this parasitic capacitance can be as a 

modeling tool.  Note also that when the inductor is changed, this could be changing parasitics 

as well.  
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Chapter 9       Prescalers and High Frequency Dividers 

 

 

1

N

1

R

KPD Z(s)

N Divider

fVCO

fN

 

 

 

Introduction 

Until now, the N counter has been treated as some sort of black box that divides the VCO 

frequency and phase by N.  If the output frequency of the VCO is low, it can be implemented 

with a digital counter fabricated with a low frequency process, such as CMOS.  This is ideal 

for low current and cost.   However, a pure CMOS counter is not going to be operating at 

higher frequencies.  To resolve this dilemma, fixed high frequency dividers called prescalers 

are often used to divide down the VCO frequency to a range that can be handled with a lower 

frequency process.  These prescalers are typically implemented as a power of two divider 

followed with some additional circuitry.  The most common implementations of prescalers 

are single modulus, dual modulus, and quadruple modulus.   

 

Single Modulus Prescaler  

For this approach, a single high frequency divider is placed in front of a counter.  The divider 

can either be integrated on the PLL chip or implemented with an external divide.  This 

approach tends to be more popular in high frequencies where it is more difficult to implement 

more intricate approaches as well as older PLLs and low cost PLLs. 

For notation purposes, upper case letters will be used to name counters and lower-case letters 

will be used to denote the actual value of that counter, if it is programmable.  For instance, b 

represents the actual value that the physical B counter is programmed to.  If the counter value 

is fixed, then the upper-case letter will denote the name and the value for that counter. 

In this case, 𝑵 =  𝑏 ∙ 𝑃, where b can be changed and P is fixed, typically to some power of 

two.  This approach is straightforward and simple but has the disadvantage that only N values 

that are an integer multiple of P can be synthesized.  The channel spacing can be reduced to 

compensate for this, doing so degrades phase noise and spurs.   



   62         Prescalers and High Frequency Dividers 

                              

1

R

KPD fVCOZ(s)

N Divider

1
PB Counter

 

Figure 9.1  Single Modulus Prescaler 

 

Dual Modulus Prescaler    

In order not to sacrifice frequency resolution, a dual modulus prescaler is often used.   These 

come in the form P/(P+1).  For instance, a 32/33 prescaler has P = 32.  In actuality, there is 

really only one prescaler of size P, and the P+1 value is implemented by putting a pulse 

swallow function before the prescaler.  Since the A counter controls whether or not the pulse 

swallow circuitry is active or not, it is often referred to as the swallow counter.   

Operation begins with the P+1 prescaler being engaged for a total of a cycles.  It takes a total 

of a∙(P+1) cycles for the A counter to count down to zero. There is also a B counter that also 

counts down at the same time as the A counter.  After the A counter reaches a value of zero, 

the pulse swallow function is deactivated and the A counter stops counting.  Since the B 

counter was counting down with the A counter, it has a remaining count of (b – a).   

Now the B counter starts counting down with the prescaler value of  P.  This takes (b−a)∙P 

counts to finish up the count, at which time, all of the counters are reset, and the process is 

repeated.  From this the fundamental equations can be derived: 

 

𝑁 = (𝑃 + 1) ∙ 𝑎 + 𝑃 ∙ (𝑏 − 𝑎) = 𝑃 ∙ 𝑏 + 𝑎   (9.1)  

 

𝑏 = 𝐹𝑙𝑜𝑜𝑟(𝑁/𝑃)   (9.2)  

 

𝑎 = 𝑁 𝑚𝑜𝑑 𝑃   (9.3)  
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Figure 9.2  Dual Modulus Prescaler  

 

The restriction that b≥a is required for proper operation.  If this constraint is not satisfied, the 

counters reset prematurely before the A counter reaches zero and the wrong N value is 

achieved.   N values for which b<a do not satisfy this criterion are referred to as illegal divide 

ratios.  It turns out that if N is greater than a limit called the minimum continuous divide ratio, 

then it will not be an illegal divide ratio. 

 

Quadruple Modulus Prescalers 

In order to achieve a lower minimum continuous divide ratio, the quadruple modulus prescaler 

is often used.  In the case of a quadruple modulus prescaler, there are four prescalers, but only 

three are used to produce any given N value.  Commonly, but not always, these four prescalers 

are of values P, P+1, P+4, and P+5, and are implemented with a single prescaler, a pulse 

swallow circuit, and a four-pulse swallow circuit.   
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Figure 9.3  Quadruple Modulus Prescaler 
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The following table shows the three steps and how the prescalers are used in conjunction to 

produce the required N value.  Regardless of whether or not b≥a, the resulting N value is the 

same.   

 

Step 

If ab  If b<a 

Description Counts Required Description 
Counts 

Required 

 

1 

 

The P+5 prescaler is 

engaged in order to 

decrement the A 

counter until a=0. 

 

a∙(P+5) 

The P+5 prescaler is 

engaged in order to 

decrement the B 

counter until b=0. 

b∙(P+5) 

 

2 

The P+4 prescaler is 

engaged in order to 

decrement the B 

counter until b=0. 

(b−a)∙(P+4) 

The P+1 prescaler is 

engaged in order to 

decrement the A 

counter until a=0. 

(a−b)∙(P+1) 

 

3 

The P prescaler is 

engaged in order to 

decrement the C 

counter until c=0. 

(c−b)∙P 

The P prescaler is 

engaged in order to 

decrement the C 

counter until c=0. 

(c−a)∙P 

 Total Counts P∙c + 4∙b + a Total Counts P∙c + 4∙b + a 

Table 9.1 Typical Operation of a Quadruple Modulus Prescaler 

 

Observe that unlike the dual modulus prescaler, the quadruple modulus prescaler does not 

have the restriction that b≥a. The restriction for the quadruple modulus prescaler is c ≥ max{a, 

b}.  N values that violate this rule are called illegal divide ratios.  Even though the quadruple 

modulus prescaler has four potential values, only three of them will be used for any particular 

N value.  The fundamental equation relating the a, b, and c values to the  N counter value is: 

𝑏 = 𝐹𝑙𝑜𝑜𝑟(𝑁/𝑃)   (9.4)  

 

The values to be programmed into the A counter, B counter, and C counter can be found as 

follows:  

𝑎 = 𝑁 𝑚𝑜𝑑 𝑃   (9.5)  

 

𝑐 = 𝐹𝑙𝑜𝑜𝑟(𝑁/𝑃)   (9.6)  

 

𝑏 =
𝑁 − 𝑐 ∙ 𝑃 − 𝑎

4
   (9.7)  
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Minimum Continuous Divide Ratio 

It turns out that for the dual modulus and quadruple modulus prescaler, all N values that are 

above a particular value, called the minimum continuous divide ratio, will be legal divide 

ratios.  For the dual modulus prescaler, this is easy to calculate.  Because a is the result of 

taking a number modulus P, the maximum this number can be is P – 1.  It therefore follows 

that if b ≥ P – 1, the N value is legal.  For the quadruple modulus prescaler, the maximum a 

can be is 3.  By doing some numerical examples, the maximum that b can be is max{ P/4 – 1, 

3 }.  From this, the minimum continuous divide ratio for the quadruple modulus prescaler can 

be calculated.   

 

Prescaler Type Prescaler 
Minimum Continuous Divide 

Ratio 

Dual Modulus 

4/5 12 

8/9 56 

16/17 240 

32/33 992 

64/65 4032 

128/129 16256 

P/(P+1) P × (P – 1) 

Quadruple Modulus 

4/5/8/9 12 

8/9/12/13 24 

16/17/20/21 48 

32/33/35/56 224 

64/65/68/69 960 

128/129/132/133 3968 

P/(P+1)/(P+4)/(P+5) max{ P/4  – 1, 3 } × P 

Table 9.2 Minimum Continuous Divide Ratios 

 

 

Adjustments to Minimum Continuous Divide Ratio for Fractional Dividers 

Fractional PLLs can introduce exceptions for both the dual modulus prescaler and the 

quadruple modulus prescaler.  This is for several reasons.  One reason for this is that fractional 

PLLs achieve an N value that is fractional by alternating the N counter value between two or 

more values.  The sequence and different values that the fractional part goes through can 

change with the design of the part.  For the desired fractional N counter to be legal, all of the 

values that the N counter switches between must also be legal.    In addition to requirements 

brought on by the use of additional N counter values, there are additional intricacies of the 

fractional N architecture that can put additional requirements.    In general, when dealing with 

fractional parts, there can be many exceptions, which often reduce the number of legal N 

counter values and raise the minimum continuous divide ratio. 
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Issues and Pitfalls with High Frequency Dividers 

On the Pitfalls of Sensitivity 

For PLLs that allow an external VCO, sensitivity of the N divider is a real-world concern.  

The divider can miscount the power level of the input signal is too low or too high.  The limit 

at which the device fails is referred to as sensitivity.  Sensitivity changes as a function of 

process, temperature, voltage, and frequency and is typically displayed in curves in the 

datasheet.  At the higher frequencies, the curve degrades due to process limitations.  At lower 

frequencies, the curve can also degrade because of problems with the dividers making 

thresholding decisions due to the edge rate of the input signal being too low.  At the lower 

frequencies, this limitation can sometimes be addressed by running a square wave instead of 

a sine wave into the high frequency input of the PLL.  Sensitivity can vary considerably over 

process, voltage, and temperature, so it is best to operate far away from the typical operating 

curves.  In other words, design to the datasheet limits and stay in the safe operating range. 
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Figure 9.4  Typical Sensitivity Curve for a PLL 

   

The sensitivity curve applies to both the desired signal from the VCO and all of its harmonics.  

VCO harmonics can especially be troublesome when a part designed for a very high operating 

frequency is used at a very low operating frequency.  Unexpected sensitivity problems can 

also be agitated by poor matching between the VCO output and the high frequency input of 

the PLL.  Although sensitivity issues are most common with the N counter, because it usually 

involves the higher frequency input, these same concepts apply to the R counter as well.   

There are a few approaches to debugging sensitivity issues.  Many devices have a way to 

access the output of the R and N dividers, which is an excellent way of diagnosing and 

debugging sensitivity problems.  Sensitivity related problems also tend to show a strong 

dependence on the Vcc voltage and temperature.  If poor impedance matching is causing the 

sensitivity problem, then sometimes pressing one’s finger on the part will temporarily make 

the problem go away.  This is because the input impedance of the part is being impacted. 

Sensitivity problems with either the N or R can cause spurs to appear, increase phase noise, 
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or cause the PLL to tune to a different frequency than it is programmed to.  In more severe 

cases, they can cause the PLL to steer the VCO to one of the power supply rails.  N counter 

sensitivity problems usually cause the VCO to go higher than it should.  R counter sensitivity 

problems usually cause the PLL to tune lower than it should.  In either case, the VCO output 

is typically very noisy.  Figure 9.5  shows a PLL locking much lower than it is programmed 

to lock due to an R counter sensitivity problem.  It is also possible for the N counter to track 

a higher harmonic of the VCO signal, which causes the PLL to tune the VCO lower than it 

should.  This problem is most common when parts are operated at frequencies much lower 

than they are designed to run at.    One should be aware that it is possible to be operating 

within the datasheet specifications for sensitivity with a few dB of margin, and still have 

degraded phase noise as a result of a sensitivity problem.  This is because the datasheet 

specification for sensitivity is a measurement of when the counters actually miscount, not 

when they become noisy. 

 

 

RES BW 10  kHz VBW 30  kHz SWP 30.0  msec 

ATTEN 10  dB REF -14.3 dBm  

10  dB/  

CENTER 1.626 76 GHz SPAN 1.00  MHz 

MKR 1.626 747 GHz 
 -37.8  dBm  

SPAN  
 1.00  MHz 

 

Figure 9.5  PLL Locking to Wrong Frequency Due to R Counter Sensitivity Problem 

 

PLL Accidentally Locking to VCO Harmonics 

All VCOs put out harmonics. If the harmonic levels are too high, the PLL may lock to them 

instead of the intended signal.  But what is too high?  The theoretical result can be found by 

looking at the sum of two sine waves and inspecting what amplitude of a harmonic causes a 

miscount.  For instance, when considering the second harmonic, it is found that if the voltage 

level is exactly one-half of the fundamental, which is 6 dB down, the PLL would theoretically 

be just about to miscount. 
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Figure 9.6  Second Harmonic Illustration 

 

Assuming that these signals are in phase, the maximum tolerable harmonic for the higher order 

harmonics can also be calculated.  Note that even harmonics are much more of a problem than 

odd harmonics.  In fact, if the odd harmonics are in just the right mixture to make a square 

wave, the sensitivity is theoretically improved. 

 

Harmonic Maximum Tolerable Level ( dBc ) 

2nd −6.0 

3rd 0.0 

4th −12.0 

5th −1.9 

6th −15.6 

7th −4.3 

8th −5.3 

9th −6.2 

10th −7.0 

Table 9.3 Theoretical Maximum Tolerable Harmonics 

 

There are other factors that can influence the maximum tolerable levels for the harmonics.  As 

the harmonics approach the maximum tolerable levels, it becomes easier for any noise riding 

on the signal to cause the counters to miscount.  Furthermore, PLL sensitivity varies as a 

function of frequency and will probably be different for the fundamental and harmonic.  The 

normalized sensitivity harmonic (HSensNorm) gives a better indication of if the divider is going 

to be fooled into counting the harmonic instead of the carrier.  It is found from the harmonic 

power (PHarmonic), carrier power (PCarrier), sensitivity to the carrier (SCarrier) and sensitivity to 

the harmonic (SHarmonic). 
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𝐻𝑆𝑒𝑛𝑠𝑁𝑜𝑟𝑚 = (𝑃𝐻𝑎𝑟𝑚𝑜𝑛𝑖𝑐 − 𝑃𝐶𝑎𝑟𝑟𝑖𝑒𝑟) + (𝑆𝐶𝑎𝑟𝑟𝑖𝑒𝑟 − 𝑆𝐻𝑎𝑟𝑚𝑜𝑛𝑖𝑐) (9.8)  

 

To test this concept, the VCO input of a LMX2326 PLL was driven with two signal generators.  

One signal generator simulated the fundamental frequency, where the second signal generator 

was used to simulate the second harmonic.  It was found that the closer that the main signal 

was to the sensitivity limits, the more sensitive it was to the second harmonic.  The sensitivity 

numbers used for the calculations here are actual measured data, not the datasheet limits, 

which tend to be much more conservative to accommodate for voltage, temperature, and 

process.   

 

 

Sensitivity Margin Max Tolerable Normalized Harmonic 

1 dB −12 dBc 

5 dB −5 dBc 

10 dB −2 dBc 

20 dB 0 dBc 

 

Table 9.4 Maximum Tolerable Normalized Second Harmonic 

  

For instance, consider an application where the user is operating at 400 MHz output with a 

+2.0 dBm signal.  Further suppose that the sensitivity limit on this part is measured to be –8 

dBm at 400 MHz and –20 dBm at 800 MHz.  This means that this application has 10 dB 

margin on the sensitivity and can tolerate a normalized harmonic of –2 dBc, which translates 

to a harmonic level of –12 dBc after the sensitivity difference is considered.    However, this 

does not have any margin.  If one was to add 5 dB margin, this would work out to –17 dBc.  

Note that this table is empirical and not exact but does serve as a rough guideline as to what 

harmonic levels are tolerable.   

Note that there is a discrepancy between the theoretical and measured results.    Theoretically, 

a second harmonic of greater than –6 dBc would cause a miscount, yet this case was measured, 

and it was found that 0 dBc was tolerable before considering sensitivity.  The true answer 

probably lies somewhere between the theoretical and measured results but is not critical to be 

exact because the whole goal is to stay away from these marginal designs. 
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The VCO Divider 

Aside from the N divider, some PLLs will also have another divider after the VCO to extend 

the frequency range.  Unlike the N divider, the duty cycle output on this matters a little more 

as this goes straight to the output; it is more than just rising edges of the output that matter.  If 

the duty cycle is not 50%, this leads to a higher second harmonic.   This is one reason why it 

is common for these dividers to be restricted to powers or multiples of two, so that a nice 50% 

duty cycle output can be obtained.  There are some devices with VCO dividers that can do 

odd divides that have a 50% duty cycle, but these are less common.   

 

1

R
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1
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1
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Figure 9.7  The VCO Divider 

 

Conclusion 

For PLLs that operate at higher frequencies, prescalers are necessary to overcome process 

limitations.  The basic operation of the single, dual, and quadruple modulus prescaler has been 

presented.   Prescalers combine with the A, B, and C counters in order to synthesize the desired 

N value.  Because of this architecture, not all N values are possible.  These values that are 

unachievable are called illegal divide ratios.  If one attempts to program a PLL with an illegal 

divide ratio, then the usual result is that the PLL will lock to the wrong frequency.  The 

advantage of using higher modulus prescalers is that a greater range of N values can be 

achieved, particularly the lower N values.   Many PLLs allow the designer more than one 

choice of prescaler to use.  In the case of an integer PLL, the prescaler used typically has no 

impact on the phase noise, phase detector spurs, or lock time, provided that the N divide value 

is the same.   
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Chapter 10      Fundamentals of Fractional Dividers 
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Introduction 

The feedback (N) divider sets the VCO frequency.  If this divider value is restricted to integer 

values only, then this implies that that the VCO frequency is restricted to integer multiples of 

the phase detector frequency.  This implies that the phase detector frequency must be lowered 

to accommodate the tuning resolution.  When the tuning resolution is not large, this typically 

leads to a degradation in phase noise and spurs.   A more popular approach is to create 

fractional N dividers to allow a finer tuning increment at the VCO without sacrificing 

performance.  Fractional N PLLs differ from integer N PLLs in that some fractional N values 

are permitted.  In general, a modulo Fden fractional N PLL allows N values in the form of: 

𝑁 = 𝑁𝑖𝑛𝑡𝑒𝑔𝑒𝑟 + 
𝐹𝑛𝑢𝑚

𝐹𝑑𝑒𝑛
   (10.1)  

For most modern fractional PLLs, Fden is typically a very large number and is even 

programmable in many devices.  This means that the phase detector frequency can be 

increased to the fOSC frequency without sacrificing resolution.  Because the N value can now 

be a fraction, the phase detector frequency can now be increased.  This results in a lower N 

divider noise, which theoretically leads to lower phase noise and spurs.    Figure 10.1  shows 

an example of a fractional N PLL generating 900.2 MHz from a 1 MHz phase detector 

frequency using a fractional divider with Fden=5.    

1

900.2

KPD

10 MHz

900.2 MHzZ(s)1 MHz

N Divider

1/10

 

Figure 10.1   Fractional N PLL Example  
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Fractional N Architectures 

 

The First Order Modulator 

The simplest way to generate fractional N values is to toggle the N divider output between 

two values such that the average is the desired value.   For instance, to achieve a fractional 

value of 900.2, the N counter can be made to be 900, 900, 900, 900, and then 901.  The cycle 

repeats.   

An accumulator is used to keep track of the instantaneous phase error, so that the proper N 

value can be used, and the instantaneous phase error can be compensated for (Best 1995).  

Although the average N value is correct, the instantaneous value is not correct, and this causes 

high fractional spurs.  In order to deal with the spur levels, a current can be injected into the 

loop filter to cancel these.  The disadvantage of this current compensation technique is that it 

is difficult to get the correct timing and pulse width for this correction pulse, especially over 

temperature.  Another approach is to introduce a phase delay at the phase detector.  This 

approach yields more stable spurs over temperature, but sometimes adds phase noise.  In some 

parts that use the phase delay compensation technique, it is possible to shut off the 

compensation circuitry in order to sacrifice reference spur level in order to improve the phase 

noise.  For the Texas Instruments LMX2364, the fractional compensation circuitry can be 

disabled in order to gain about a 5 dB improvement in phase noise at the expense of 15 dB 

degradation in fractional spurs.  The nature of added phase noise and spurs for fractional parts 

is very part specific. 

Figure 10.2 shows how a fractional N PLL can be used to generate a 900.2 MHz signal from 

a 1 MHz phase detector frequency, using the phase delay technique.  This corresponds to an 

N value of 90.2.    The 1 MHz phase detector frequency has a period of 1000 ns and a 900.2 

MHz signal divided by 900 has a period of 999.778 ns and  represents the difference in these 

periods. 

 

 

Compensated 

Divider Output

Uncompensated 

Divider Output

1 ms 2 ms 3 ms 4 ms 5 ms

 2 3 4

 

 

Figure 10.2  Timing Diagram for Fractional Compensation 
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Phase 

Detector 

Cycle 

Accumulator 

(Cycles) 

Overflow 

(Cycles) 

Divide 

Value 

Time for Rising Edge for 

Dividers 

(ns) 

Phase 

Compensation 

(ns) 
Uncompensated Compensated 

1 0.2 0 900 999.778 1000 0.222 

2 0.4 0 900 1999.556 2000 0.444 

3 0.6 0 900 2999.333 3000 0.667 

4 0.8 0 900 3999.111 4000 0.888 

5 0.0 1 901 5000.000 5000 0.000 

Table 10.1 Fractional N Phase Delay Compensation Example 

 

In Table 5.2, only the VCO cycles that produce a signal out of the N counter are accounted 

for.  The phase delay is calculated as follows: 

 

𝑃ℎ𝑎𝑠𝑒 𝐷𝑒𝑙𝑎𝑦 =
1

𝑓𝑉𝐶𝑂
∙ (𝐴𝑐𝑐𝑢𝑚𝑢𝑙𝑎𝑡𝑜𝑟 − 𝑂𝑣𝑒𝑟𝑓𝑙𝑜𝑤)   (10.2)  

 

When the accumulator value exceeds one, then an overflow count of one is produced, the 

accumulator value is decreased by one, and the next VCO cycle is swallowed (Best 1995).  

Note that in Table 10.1 , this whole procedure repeats every 5 phase comparator cycles, which 

corresponds to 4501 VCO cycles.  

 

Higher Order Delta Sigma Modulators 

Delta sigma PLLs have no analog compensation and reduce fractional spurs using digital 

techniques in order to try to bypass a lot of the issues with using traditional analog 

compensation.  The delta sigma PLL reduces spurs by alternating the N counter between more 

than two values.  The impact that this has on the frequency spectrum is that it pushes the 

fractional spurs to higher frequencies that can be filtered more by the loop filter. 

1

N

1

R

KPD fVCOZ(s)



Sigma Delta Input

 

Figure 10.3  Delta Sigma PLL Architecture 
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Delta Sigma Order Delta Sigma Input 

1   

( Traditional Fractional PLL without Compensation ) 
0, 1 

2nd −1, 0, 1, 2 

3rd −3, −2, −1, 0, 1, 2, 3, 4 

4th −7, ... +8 

kth −2k +1, ... ,   2k  

Table 10.2 Delta Sigma Modulator Example 

 

For example, consider a PLL with an N value of 100.25 and a phase detector frequency of 1 

MHz.  A traditional fractional N PLL would achieve this by alternating the N counter values 

between 100 and 101.  A 2nd order delta sigma PLL would achieve this by alternating the N 

counter values between 99, 100, 101, and 102.  A 3rd order delta sigma PLL would achieve 

this by alternating the N counter values between 97, 98, 99, 100, 101, 102, 103, and 104.  In 

all cases, the average N counter value would be 100.25.   Note that in all cases, all of the N 

counter values must be legal divide ratios. The first fractional spur would be at 250 kHz, but 

the 3rd order delta sigma PLL would theoretically have lower spurs than the 2nd order delta 

sigma PLL.  This would also have better spurs than the traditional fractional N PLL, although 

the traditional PLL could have analog compensation to impact the comparison. 

 

Generation of the Delta Sigma Modulation Sequence 

First Order Modulator 

The sequence generated by the delta sigma modulator is dependent on the structure and the 

order of the modulator.  For this case, the problem is modeled as having an ideal divider with 

some unwanted quantization noise.  In this case, the quantization noise represents the 

instantaneous phase error of an uncompensated fractional divider.  Figure 10.4  contains 

expressions involving the Z transform, which is the discrete equivalent of the Laplace 

transform.  The expression in the forward loop representation is the summation of the 

accumulator and the z-1 in the feedback path represents a 1 clock cycle delay. 


1

1-Z-1 

Z-1

X(z) Y(z)

E(z)

Quantization Noise

+

-

 

Figure 10.4  The First Order Delta Sigma Modulator 
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The transfer function for the above system is as follows: 

 

𝑌(𝑧) = 𝑋(𝑧) + 𝐸(𝑧) ∙ (1 − 𝑧−1)   (10.3)  

 

Note that the error term transfer function means to take the present value and subtract away 

what the value was in the previous clock cycle.  In other words, this is a form of digital high 

pass filtering.    The following table shows what the values of this first order modulator would 

be for an N value of 900.2. 

 

x[n] Accumulator e[n] y[n] N Value 

0.2 0.2 −0.2 0 900 

0.2 0.4 −0.4 0 900 

0.2 0.6 −0.6 0 900 

0.2 0.8 −0.8 0 900 

0.2 1.0 −0.0 1 901 

0.2 0.2 −0.2 0 900 

0.2 0.4 −0.4 0 900 

0.2 0.6 −0.6 0 900 

0.2 0.8 −0.8 0 900 

0.2 1.0 −0.0 1 901 

Table 10.3 Values for a First Order Modulator for N=900.2 

 

Higher Order Modulators 

In general, the first order modulator is considered a trivial case and delta sigma PLLs are 

usually meant to mean higher than first order.  Although there are differences in the 

architectures, the general form of the transfer function for an nth order delta sigma modulator 

is: 

𝑌(𝑧) = 𝑋(𝑧) + 𝐸(𝑧) ∙ (1 − 𝑧−1)𝑛   (10.4)  

 

As a rule of thumb, the lower offset spur/phase noise energy is pushed out to half of the phase 

detector frequency, where it should be easier to filter with the loop filter.  The peaks are at 

odd multiples of the fPD/2 and the point where all the modulators are the same is theoretically 

fPD/6.  This result is derived in a later chapter but illustrated in Figure 10.5 . 
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Figure 10.5  Theoretical Delta Sigma Noise for a 10 MHz Phase Detector Frequency 

 

Example with Spurs 

Consider the generation of a fraction of 1/10 with a first, second, third, and fourth order 

modulator.  The theoretical sequence is shown in Table 10.4 . 

 

Modulator Order Sequence 

First 
0,0,0,0,0,0,0,0,0,1, 

(repeats) … 

Second 
0,0,0,1,-1,1,-1,1,0,0,0,0,1,-1,1,-1,1,0,0,0, 

(repeats) … 

Third 
0,0,1,-1,0,1,0,0,-1,2,-2,2,-1,1,-1,0,1,1,-2,1, 

(repeats) … 

Fourth 

0,0,1,-1,1,-2,4,-4,2,1,-1,-1,3,-3,2,-1,2,-2,1,0,0,1,-

2,2,-1,2,-3,3,-1,-1,1,2,-4,4,-2,1,-1,1,0,0, 

(repeats) ... 

Table 10.4 Delta Sigma Modulator Sequence for a Fraction of 1/10 

 

We see that the sequence repeats every 10 times for the first order modulator, every 20 times 

for the second and third order modulators, and every 40 times for the fourth order modulator. 
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Figure 10.6  Spur Comparison for Different Modulators for Fraction of 1/10 

 

Looking at 1 MHz, we see that the higher order modulators improve the spurious performance 

at 1 MHz and the lower offsets.   Note that the fact that the spur at 1 MHz is completely 

eliminated for the 2nd order modulator is a lucky coincidence for this fraction, but the general 

pattern is that the higher order modulators push out the spurs to higher offsets, that can be 

easier filtered by the loop filter.   This will be discussed in depth in a later chapter. 

 

Concept of Dithering 

In addition to using more than two N counter values, delta sigma PLLs may also use dithering 

to reduce the spur levels.  Dithering is a technique of adding randomness to the sequence.  For 

example, an N divide value of 99.5 can be achieved with the following sequence: 

98, 99, 100, 101, ... ( pattern repeats ) 

This sequence is periodic, which may lead to higher fractional spurs.  Another sequence that 

could be used is: 

99, 100, 98, 101, 98, 99, 100, 101, 98, 101, 99, 100 ... (pattern repeats) 

 

Both sequences achieve an average N value of 99.5, but the second one has less periodicity, 

which theoretically implies that more of the lower frequency fractional spur energy is pushed 

to higher frequencies. 

Dithering is typically implemented in the PLL chip, but it can also be manually implemented 

by the user.  The general concept is to make the fraction look like something that is much 
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more complicated.  For instance, consider the fraction of 17/1536.  This fraction can also be 

expressed as 17000 / 1536000.  If dithering is not used, the fractional accumulators start at 

zero, and modulator order is the same, then this larger equivalent fraction would yield the 

same sequence as the simplified fraction.  However, there are ways to make this not the case.  

For instance, one could use a fraction of 17000 / 1536001.  In this case the fraction does not 

reduce, but some of the sub-fractional spurs can be lower at the expense of increasing the 

close-in fractional noise.  In this case, there might be some concern that the frequency is off, 

but there are now fractional PLLs with much larger denominators where this is much less of 

an issue.  Another approach that does not introduce any frequency error is to put a non-zero 

starting value in one of the fractional accumulators.  If this initial start value is relatively prime 

with the fractional denominator, then the sequence would be as it would be for the larger 

denominator.    

The impact of dithering is different for every application.  It tends to have a minimal impact 

on the main fractional spurs, but delta-sigma PLLs can have sub-fractional spurs that occur at 

a fraction of the channel spacing.  Dithering tends to have the most impact on these spurs.  In 

some cases, it can improve sub-fractional spur levels, while in other cases, it can make these 

spurs worse.    One example where dithering can degrade spur performance is in the case 

where the fractional numerator is zero. 

   

 Conclusion 

The delta sigma architecture can be used in fractional PLLs to reduce the fractional spurs.  In 

practice, delta-sigma fractional PLLs do have much lower fractional spurs than traditional 

fractional PLLs with analog compensation.  In addition to this, the digital compensation of 

delta-sigma PLLs tends to add less phase noise than the analog compensation used for the 

traditional first order fractional engine.  Higher order modulators theoretically allow more 

reduction in fractional spurs, but do not always give the best results; this is application 

specific.  One might think that because the compensation is based on digital techniques, the 

delta-sigma fractional spurs would be very predictable from pure mathematical models.  

However, calculated spur levels due to these factors tend to be very low, so other contributing 

factors can easily dominate the spur level.  The modulator order and dithering are two things 

that can be chosen.  There can be many kinds of dithering, and many hidden test bits that can 

impact performance.  In truth, delta-sigma PLLs can be very complex, although the part 

presented to the end user may seem much less complex because many test bits will be defined 

to default values after evaluation. 
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Chapter 11      Introduction to Loop Filter Coefficients 

 

Introduction 

This chapter introduces notation used to describe loop filter behavior throughout this book.   

The loop filter transfer function is defined as the change in voltage at the tuning port of the 

VCO divided by the current at the charge pump that caused it.   In the case of a second order 

loop filter, it is simply the impedance.  In general, the transfer function of the PLL loop filter 

can be described as follows: 

𝑍(𝑠) =  
1 + 𝑠 ∙ 𝑇2

𝑠 ∙ (𝐴3 ∙ 𝑠3 + 𝐴2 ∙ 𝑠2 + 𝐴1 ∙ 𝑠 + 𝐴0)
 (11.1)  

 

𝑇2 =  𝑅2 ∙ 𝐶2 (11.2)  

 

A0, A1, A2, and A3 are the loop filter coefficients of the filter.  In the case of a second order 

loop filter, A2 and A3 are zero.  In the case of a third order loop filter, A3 is zero.  If the loop 

filter is passive, then A0 is the sum of the capacitor values in the loop filter.  In this book, 

there are two basic classes of loop filter that will be presented, passive and active.  Although 

there are multiple topologies presented for the active filter, only one is shown here, since this 

is the preferred approach. 
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Figure 11.1  Passive Loop Filter 
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Figure 11.2  Active Loop Filter (Active A) 
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Calculation of Filter Coefficients 

The equations for the 2nd and 3rd order filters are redundant as they can be easily derived from 

the 4th order equations by setting the unused component values to zero.  In order to simplify 

calculations later on, the filter coefficients will be referred to many times, so it is important to 

be very familiar with how to calculate them. 

 

Filter Order Symbol Filter Coefficient Calculation 

2 

A0 C1 + C2 

A1 C1∙C2∙R2 

A2 0 

A3 0 

3 

A0 C1 + C2 + C3 

A1 C2∙R2∙(C1+C3) + C3∙R3∙(C1+C2) 

A2 C1∙C2∙C3∙R2∙R3 

A3 0 

4 

A0 C1 + C2 + C3 + C4 

A1 C2∙R2∙(C1+C3+C4) + R3∙(C1+C2)∙(C3+C4)+C4∙R4∙(C1+C2+C3) 

A2 
C1∙C2∙R2∙R3∙(C3+C4)  

+ C4∙R4∙(C2∙C3∙R3+C1∙C3∙R3+C1∙C2∙R2+C2∙C3∙R2) 

A3 C1∙C2∙C3∙C4∙R2∙R3∙R4 

Table 11.1 Filter Coefficients for Passive Loop Filters 

 

Filter Order Symbol Filter Coefficient Calculation 

2 

A0 C2 

A1 C1∙C2∙R1 

A2 0 

A3 0 

3 

A0 C2 

A1 C2∙(C1∙R1+C3∙R3) 

A2 C1∙C2∙C3∙R1∙R3 

A3 0 

4 

A0 C2 

A1 C2∙(C1∙R1 + C3∙R3 + C4∙R4 + C4∙R3) 

A2 C1∙C2∙R1∙( C3∙R3 + C4∙R4 + C4∙R3)+ C2∙C3∙C4∙R3∙R4 

A3 C1∙C2∙C3∙C4∙R1∙R3∙R4 

Table 11.2 Filter Coefficients for an Active Type A Filter 
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Filter Order Symbol Filter Coefficient Calculation 

2 

A0 C1 + C2 

A1 C1∙C2∙R2 

A2 0 

A3 0 

3 

A0 C1 + C2 

A1 C1∙C2∙R2+(C1+C2)∙C3∙R3 

A2 C1∙C2∙C3∙C4∙R2∙R3 

A3 0 

4 

A0 C1 + C2 

A1 C1∙C2∙R2+(C1+C2)∙(C3∙R3+C4∙R4+C4∙R3) 

A2 
(C1+C2)∙C3∙C4∙R3∙R4 

C1∙C2∙R2∙(C3∙R3+C4∙R4+C1∙C2∙R2+C4∙R3) 

A3 C1∙C2∙C3∙C4∙R2∙R3∙R4 

Table 11.3 Filter Coefficients for Active Type B and C Filters 

 

The calculation of the zero, T2, is the same for active and passive filters and independent of 

loop filter order: 

𝑇2 =  𝑅2 ∙ 𝐶2 (11.3)  

 

Relation between the Loop Filter Coefficients and Loop Filter Poles 

In order to get a more intuitive feel of the loop filter transfer function, it is often popular to 

express this in terms of poles and zeroes.  If one takes the reciprocal of the poles or zero 

values, then they get the corresponding frequency in radians.  In the case of a fourth order 

passive loop filter, it is possible to get complex poles. 

 

𝑍(𝑠) =  
1 + 𝑠 ∙ 𝑇2

𝑠 ∙ 𝐴0 ∙ (1 + 𝑠 ∙ 𝑇1) ∙ (1 + 𝑠 ∙ 𝑇3) ∙ (1 + 𝑠 ∙ 𝑇4)
 (11.4)  

 

Once the loop filter time constants are known, it is easy to calculate the loop filter coefficients.  

The time constants and filter coefficients are related as follows: 

 

𝐴1

𝐴0
= 𝑇1 + 𝑇3 + 𝑇4 (11.5)  
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𝐴2

𝐴0
= 𝑇1 ∙ 𝑇3 + 𝑇1 ∙ 𝑇4 + 𝑇3 ∙ 𝑇4 (11.6)  

 

𝐴3

𝐴0
= 𝑇1 ∙ 𝑇3 ∙ 𝑇4 (11.7)  

 

Calculation of Poles for Passive Filters 

Calculation of Pole for Second Order Filter 

The calculation of the pole in the case of a second order filter, T1 is trivial in this case. 

 

𝑇1 =
𝐴1

𝐴0
=  
𝐶1 ∙ 𝐶2 ∙ 𝑅2

𝐶1 + 𝐶2
 (11.8)  

 

Calculation of Poles for Third Order Filter 

It is common to approximate the passive third order poles with the active third order poles.  In 

order to solve exactly, it is necessary to solve a system of two equations and two unknowns. 

 

𝑇1 + 𝑇3 =
𝐴1

𝐴0
 (11.9)  

 

𝑇1 ∙ 𝑇3 =
𝐴2

𝐴0
 (11.10)  

 

𝑇1, 𝑇3 =
𝐴1 ± √𝐴12 − 4 ∙ 𝐴0 ∙ 𝐴2

2 ∙ 𝐴0
 (11.11)  

 

Calculation of Poles for Fourth Order Filter 

For the passive fourth order loop filter, the time constants satisfy the following system of 

equations: 

𝑇1 + 𝑇3 + 𝑇4 =
𝐴1

𝐴0
 (11.12)  

𝑇1 ∙ 𝑇3 + 𝑇1 ∙ 𝑇4 + 𝑇3 ∙ 𝑇4 =
𝐴2

𝐴0
 (11.13)  

𝑇1 ∙ 𝑇3 ∙ 𝑇4 =  
𝐴3

𝐴0
 (11.14)  
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If one uses the first equation to eliminate the variable T1, the result is as follows: 

 

𝑦 =  𝑥2 −
𝐴1

𝐴0
∙ 𝑥 +

𝐴2

𝐴0
  (11.15)  

 

𝑦 ∙ (𝑥 −
𝐴1

𝐴0
)  =  

𝐴3

𝐴0
 (11.16)  

 

𝑥 = 𝑇3 + 𝑇4 (11.17)  

 

𝑦 = 𝑇3 ∙ 𝑇4   (11.18)  

 

Solving (11.15) into (11.16) yields the following cubic equation. 

 

𝑥3 − 2 ∙
𝐴1

𝐴0
 ∙ 𝑥2 + (

𝐴12

𝐴02
+ 
𝐴2

𝐴0
) ∙ 𝑥 + (

𝐴3

𝐴0
− 
𝐴1 ∙ 𝐴2

𝐴02
) = 0  (11.19)  

 

There will be at least one real root to this equation that can be found using numerical methods 

or the closed form solution presented in a later chapter.  After x is chosen to be a real root of 

(11.19), then (11.15) can be used to find y.   From this the poles can be found. 

 

𝑇3, 𝑇4 =
𝑥 ± √𝑥2 − 4 ∙ 𝑦

2
   (11.20)  

 

𝑇1 =  
𝐴3

𝐴0 ∙ 𝑦
   (11.21)  

 

One rather odd artifact of the fourth order passive filter is that it is possible for the poles T3 

and T4 to be complex and yet still have a real-world working loop filter. Although this can 

happen, it is not very common. 
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Calculation of Poles for Active Filters 

For active filters, it is perfectly legitimate to calculate the poles from the loop filter coefficients 

just as done in a passive filter.  However, the addition of the op-amp adds isolation that 

simplifies the mathematics by separating out poles T3 and T4.  The calculation of the pole 

,T1, is the same for the second, third, and fourth order filters and only differs on the filter type. 

For an Active Type A Filter: 

 

𝑇1 =
𝐴1

𝐴0
=  𝐶1 ∙ 𝑅1 (11.22)  

For passive type B and type C filters. 

 

𝑇1 =
𝐴1

𝐴0
=  
𝐶1 ∙ 𝐶2 ∙ 𝑅2

𝐶1 + 𝐶2
 (11.23)  

 

In the case of an active third order loop filter, the calculation of the pole, T3, is rather simple: 

 

𝑇3 = 𝐶3 ∙ 𝑅3 (11.24)  

 

In the case of an active fourth order loop filter, T3 and T4 satisfy the following equations: 

 

𝑇3, 𝑇4 =
𝑥 ± 𝑦

2
 (11.25)  

 

𝑥 = 𝐶3 ∙ 𝑅3 + 𝐶4 ∙ 𝑅4 + 𝐶4 ∙ 𝑅3 (11.26)  

 

𝑦 =  √𝑥2 − 4 ∙ 𝐶3 ∙ 𝐶4 ∙ 𝑅3 ∙ 𝑅4 (11.27)  

 

Conclusion 

It is common to discuss a loop filter in terms of poles and zeros.  The zero, T2, is always 

calculated the same way, but calculations for the poles depends on the loop filter order and 

whether or not the loop filter is active or passive.  However, filter coefficients are easier to 

calculate, simplify further calculations, and make it easier to generalize many results.  The 

purpose of this chapter was to make the reader familiar with the filter coefficients, A0, A1, 

A2, and A3, since they will be used extensively throughout this book. 
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Chapter 12      Introduction to PLL Transfer Functions and Notation 

 

Introduction 

This chapter introduces fundamental transfer functions and notation for the PLL that will be 

used throughout this book.  A clear understanding of these transfer functions is critical in order 

to understand spurs, phase noise, lock time, and PLL loop filter design.   

 

PLL Basic Structure 

1

N

1

R

KPD

fOSC

fVCOZ(s)
Kvco

 s

 

Figure 12.1  Basic PLL Structure 

 

Introduction of Transfer Functions 

The open loop transfer function is defined as the transfer function from the phase detector 

input to the output of the PLL.  Note that the VCO gain is divided by a factor of s.  This is to 

convert output frequency of the VCO into a phase.  Technically, this transfer function is the 

phase of the PLL output divided by the phase presented to the phase detector, assuming the 

other input, fR, is a constant zero phase.  The open loop transfer function is shown below: 

 

𝐺(𝑠) =  
𝐾𝑃𝐷 ∙ 𝐾𝑉𝐶𝑂 ∙ 𝑍(𝑠)

𝑠
  (12.1)  

𝑠 = 2𝜋 ∙ 𝑗 ∙ 𝑓  (12.2)  

 

The forward loop gain is defined by dividing equation (12.1) by a factor of N.  Other 

references may integerchange these definitions of forward and open loop gain.   The N counter 

value is the output frequency divided by the phase detector frequency.   

To be consistent with control theory textbooks, it may make sense to relate N the feedback 

value, H. 

𝐻 = 
1

𝑁
  (12.3)  
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The closed loop transfer function takes into account the whole closed loop response, including 

the phase frequency detector, feedback divider, and VCO. 

 

𝐶𝐿(𝑠) =  
𝐺(𝑠)

1 + 𝐺(𝑠) ∙ 𝐻
  (12.4)  

 

This transfer function involves an output phase divided by an input phase.  In other words, it 

is a phase transfer function.  However, the frequency transfer function would be exactly the 

same.  If one is considering an input frequency, this could be converted to a phase by dividing 

by a factor of s, then it is converted to a phase.  At the output, one would multiply by a factor 

of s to convert the output phase to a frequency.  Both of these factors cancel out, which proves 

that the phase transfer functions and frequency transfer functions are the same.  By considering 

the change in output frequency produced by introducing a test frequency at various points in 

the PLL loops, all of the transfer functions can be derived. 

 

Source Transfer Function 

Input Reference 
1

𝑅
∙

𝐺(𝑠)

1 + 𝐺(𝑠) ∙ 𝐻
 

R Divider 
𝐺(𝑠)

1 + 𝐺(𝑠) ∙ 𝐻
 

N Divider 
𝐺(𝑠)

1 + 𝐺(𝑠) ∙ 𝐻
 

Phase Detector/Charge Pump 
1

𝐾𝑃𝐷
∙

𝐺(𝑠)

1 + 𝐺(𝑠) ∙ 𝐻
 

VCO 
1

1 + 𝐺(𝑠) ∙ 𝐻
 

Table 12.1 Transfer functions for various parts of the PLL 

 

Analysis of Transfer Functions 

Note that the input reference transfer function has a factor of 1/R and the phase detector 

transfer function has a factor of 1/KPD   It is also true that the phase detector noise, N divider 

noise, R divider noise, and the input reference noise all contain a common factor in their 

transfer functions.    All of these noise sources will be referred to as in-band noise sources and 

have the common factor given below.  

 

𝐺(𝑠)

1 + 𝐺(𝑠) ∙ 𝐻
  (12.5)  
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The loop bandwidth is defined as the frequency for which the forward loop transfer function 

has a gain of one. 

 

‖𝐺(𝑗 ∙ 𝜔𝑐 ∙ 𝐻)‖ = 1 (12.6)  

 

c is used to express loop bandwidth in radians and BW is used to express this in Hz.   

 

𝜔𝑐 =   2𝜋 ∙ 𝐵𝑊 (12.7)  

 

Phase margin is defined as one hundred eighty degrees minus the phase of the forward loop 

transfer function at the loop bandwidth frequency. 

 

𝜙 = 180 −  ∠𝐺(𝑗 ∙ 𝜔𝑐) ∙ 𝐻 (12.8)  

 

Phase margin relates to the stability.  If the phase margin is low, there tends to be peaking in 

the closed loop transfer function and ringing in the PLL transient response.  Higher phase 

margin gives a flatter closed loop transfer function, but excessively high phase margin can 

sacrifice switching speed of the PLL. 

A third parameter of interest is the gamma optimization factor, which is defined as follows: 

 

𝛾 =
𝑇2

𝜔𝑐2 ∙ 𝐴0
 (12.9)  

 

The gamma optimization relates maximizing the phase margin at the loop bandwidth 

frequency.  For a gamma of one and a second order filter, the phase margin is maximized at 

the loop bandwidth frequency.  If gamma is less than one, this maximum occurs at a frequency 

higher than the loop bandwidth frequency and if gamma is greater than one, this maximum 

point occurs at a frequency is lower than the loop bandwidth frequency. 

Using these definitions, and equations (9.1) and (9.2), and the fact that G(s) is monotonically 

decreasing in s allows the following approximation. 

 

𝐺(𝑠)

1 + 𝐺(𝑠) ∙ 𝐻
  ≈   {

𝑁              𝑓𝑜𝑟  𝑓 ≪ 𝐵𝑊

𝐺(𝑠)        𝑓𝑜𝑟 𝑓 ≫ 𝐵𝑊
 (12.10)  
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Figure 12.2  Transfer Function that Multiplies all Sources except the VCO 

 

The VCO has a different transfer function: 

‖
1

1 + 𝐺(𝑠) ∙ 𝐻
‖ (12.11)  

 

Note that this transfer function can be approximated by: 

‖
1

1 + 𝐺(𝑠) ∙ 𝐻
‖  =   

{
 

 
𝑁

‖𝐺(𝑠)‖
      𝑓𝑜𝑟 𝑓 ≪ 𝐵𝑊

1                 𝑓𝑜𝑟 𝑓 ≫ 𝐵𝑊

     (12.12)  
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Figure 12.3  Transfer Function for the VCO 
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Scaling Properties of PLL Loop Filters 

Loop Gain Constant 

In order to discover these properties, it is easier to expand the expression for the closed loop 

transfer function and introduce a new variable, K.  

 

𝐾 =  
𝐾𝑃𝐷 ⋅ 𝐾𝑉𝐶𝑂

𝑁
 (12.13)  

The loop gain constant, K, is dependent on the charge pump gain, VCO gain, and N counter 

value.  From the above equation, one can see that these three parameters can be changed 

without impacting the transfer functions, provided that the loop gain constant is held constant.  

For instance, if the charge pump gain and N divider value are doubled, yet the VCO gain is 

held constant, the closed loop transfer function remains unchanged.  Using this new definition 

for loop gain constant, the closed loop transfer function can be simplified. 

 

𝐺(𝑠)

1 +
𝐺(𝑠)

𝑁⁄
 =  

𝐾 ⋅ 𝑁 ⋅ (1 + 𝑠 ∙ 𝑇2)

𝑠5 ∙ 𝐴3 + 𝑠4 ∙ 𝐴2 + 𝑠3 ∙ 𝐴1 + 𝑠2 ∙ 𝐴0 + 𝑠 ∙ 𝐾 ∙ 𝑇2 + 𝐾
 (12.14)  

Scaling Property of Components 

Even though loop filter design has not been discussed yet, it is not premature to show how to 

scale loop filter components.  The first step involves understanding how the loop filter 

coefficients change with the loop filter values.  If one was to change all capacitors by a factor 

of x and all resistors by a factor of y, then the impact on the loop filter coefficients can be 

found. 

 

Loop Filter Coefficient Proportionality ( )  to x and y 

A0 ∝  𝑥 

A1 ∝  𝑥 ∙ (𝑥 ∙ 𝑦) 
A2 ∝  𝑥 ∙ (𝑥 ∙ 𝑦)2 

A3 ∝  𝑥 ∙ (𝑥 ∙ 𝑦)3 

Table 12.2 Relationship of Loop Filter Coefficients to Component Scaling Factors 

 

Equation Implication 

 𝑥 ∝  
𝐾

𝐵𝑊2
 

The loop filter capacitors should be chosen proportional to the loop gain 

divided by the loop bandwidth squared. 

𝑦 ∝  
𝐵𝑊

𝐾
 

The loop filter resistors should be chosen proportional to the loop 

bandwidth over the loop gain. 

Table 12.3 The Rule for Scaling Components 
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Table 12.3 shows the fundamental rule for scaling components.  There are several ways this 

can be applied.  Consider the case where the loop gain constant, K, is changed.  An example 

of this is if one were to inherit a PLL design done by someone else who has since left the 

company.  Suppose in this case, the original design was done with a PLL with a charge pump 

gain of 1 mA, and now the PLL is being replaced with a newer one with a charge pump gain 

of 4 mA.  Because the loop gain changes by a factor of 4, all the capacitors should be made 

four times larger and all the resistors should be made to one-fourth of their original value.  

Consider a second case where one designed a loop filter for a loop bandwidth of 10 kHz, but 

now wants to increase the loop bandwidth to 20 kHz.  In this case, the loop bandwidth changes 

by a factor of two, so the capacitors should be one-fourth of their original value, and the 

resistors should be twice their original value.   

 

Scaling Rule of Thumb for the Loop Bandwidth 

This rule deals with the case when the gain constant is changed, but the loop filter components 

are not changed and the impact on loop bandwidth is desired.  Even though the loop filter is 

not optimized in this case, it still makes sense to understand how it behaves.  An example of 

this could be where the loop filter is designed for a particular VCO gain, but the actual VCO 

has a gain that varies considerably.   

To derive this rule, recall that the loop bandwidth is the frequency for which the magnitude of 

the open loop transfer function is unity.  It is easier to see this relationship if the open loop 

transfer function is expressed in the following form. 

 

𝐺(𝑠)  =  
𝐾

𝑠
∙

1 + 𝑠 ∙ 𝑇2

𝑠 ∙ 𝐴0 ∙ (1 + 𝑠 ∙ 𝑇1) ∙ (1 + 𝑠 ∙ 𝑇3) ∙ (1 + 𝑠 ∙ 𝑇4)
 (12.15)  

 

Although a coarse approximation, if one neglects all the poles and zeros, one can derive the 

fundamental result. 

 

𝐵𝑊 ∝   √𝐾 (12.16)  

 

This rule assumes that the loop filter is not changed.  For example, suppose that it is known 

that a PLL has a loop bandwidth of 10 kHz when the VCO gain is 20 MHz/V.  Suppose the 

VCO gain changes to 40 MHz/V.  In this case, the loop bandwidth should be about 1.4 times 

larger.  This rule of thumb is not exact, and the loop filter may not be perfectly optimized, but 

it is useful in many situations.   
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Applying the Scaling Factor for Re-Use of a Loop Filter 

When the loop bandwidth, charge pump gain, N divider value, or VCO frequency of a loop 

filter is changed significantly, then the loop dynamics are changed as well.  Although it is 

possible to re-design the loop filter, it is often desirable to use the same loop filter.  In other 

situations, this might not be practical, such is the case for a wideband tuning application where 

the N divider and VCO gain varies.   In this situation, a good strategy is to keep the loop gain 

constant from changing too much. 

 

 
𝐾𝑃𝐷1 ⋅ 𝐾𝑉𝐶𝑂1

𝑁1
  ~ 

𝐾𝑃𝐷2 ⋅ 𝐾𝑉𝐶𝑂2
𝑁2

 (12.17)  

 

For most modern PLLs, the easiest way to do this is to adjust the charge pump gain.  In other 

words, if the VCO gain was to double the charge pump gain could be made half to compensate. 

 

 

Conclusion 

This chapter has discussed the fundamental concept of PLL transfer functions.  The reader 

should familiarize themselves with the notation in this chapter, since it will be used throughout 

the book.  Although the PLL transfer functions are derived as phase transfer functions, the 

frequency transfer functions are identical. 
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Chapter 13      PLL Modulation, Demodulation, and Clock Cleaning 

 

 

Introduction 

In many applications, one may be interested in how a PLL reacts to signals at the input 

reference, N divider, or VCO tuning voltage.   In the case of PLL modulation, this signal is 

intentionally created and applied at some point in the loop so that the carrier is modulated.  In 

demodulation applications, the signal is applied at some point in the loop and information 

from the signal is obtained at some other point in the PLL loop.  In the case of clock cleaning, 

the PLL is used to suppress unwanted noise on the input reference signal.   This chapter 

discusses general principles and techniques for PLL modulation and demodulation. 

 

General Modulation Principles 

Relationship between Phase and Frequency 

Modulation can be viewed as a phase or frequency; it can be shown that both are related.  Let 

the voltage output of the VCO be defined as follows: 

 

𝑉(𝑡) = 𝐴 ∙ 𝑐𝑜𝑠(𝜔0 ∙ 𝑡 +  𝜙(𝑡))   (13.1)  

 

In this equation, A is the amplitude of the signal, 0 is the unmodulated carrier frequency, f(t) 

is the phase modulation, and 0 + f(t) is the instantaneous phase. 

The instantaneous frequency of the signal is the time derivative of the instantaneous phase.   

 

𝑑

𝑑𝑡
[𝜔0 ∙ 𝑡 +  𝜙(𝑡)] =  𝜔0 +

 𝑑𝜙

𝑑𝑡
   (13.2)  

 

The frequency modulation can be thought of as the difference of the actual frequency and 

the unmodulated frequency of the signal.  

 

𝑓(𝑡) =  
 𝑑𝜙

𝑑𝑡
   (13.3)  

 

It follows from this that: 

𝜙(𝑡) =  ∫ 𝑓(𝑥) ∙ 𝑑𝑥
𝑡

0

   (13.4)  
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Since frequency is the derivative of phase, it follows that frequency and phase modulation are 

really two different ways of looking at the same thing.  It is therefore sufficient to focus the 

study on phase modulation.  The only difference is that in traditional frequency modulation, 

one would not expect the phase to change abruptly because this would not be possible if the 

modulation function for the frequency was continuous.  To account for this subtle point, 

frequency modulation and phase modulation will be generalized as angle modulation.  It 

therefore follows that (13.1) can be re-stated as: 

 

𝑉(𝑡) =  𝐴 ∙ 𝑐𝑜𝑠[𝜔0 ∙ 𝑡 +  𝜙(𝑡)] =  𝐴 ∙ 𝑐𝑜𝑠 [𝜔0 ∙ 𝑡 + ∫ 𝑓(𝑥) ∙ 𝑑𝑥
𝑡

0

]   (13.5)  

 

When modulation is applied to a PLL in various forms, sometimes an integral or derivative 

finds its way worked into the formula.  This is why it is useful to understand this relationship 

between frequency and phase. 

 

Sinusoidal Tone Modulation 

The most basic form of modulation is a sinusoidal tone.  Define fMOD as the modulation 

frequency in Hz.  For this type of modulation: 

 

𝜙(𝑡) =  𝛽 ∙ 𝑠𝑖𝑛[2𝜋 ∙ 𝑓𝑀𝑂𝐷 ∙ 𝑡]    (13.6)  

 

It is easier to think of this in terms of frequency modulation and to define the deviation from 

center frequency in Hz as fDEV.  Now take the derivative of (13.6) to find frequency deviation 

from center frequency in Hz. 

 

2𝜋 ∙ 𝑓𝐷𝐸𝑉 ∙ 𝑐𝑜𝑠(2𝜋 ∙ 𝑓𝑀𝑂𝐷 ∙ 𝑡) =  
 𝑑𝜙

𝑑𝑡
    =  𝛽 ∙ 2𝜋 ∙ 𝑓𝑀𝑂𝐷 ∙ 𝑐𝑜𝑠(2𝜋 ∙ 𝑓𝑀𝑂𝐷 ∙ 𝑡)    (13.7)  

 

By equating the two expressions in (13.7), the equation for the modulation index can be 

expressed in terms of the frequency deviation and the modulation frequency. 

 

𝛽 =   
𝑓𝐷𝐸𝑉
𝑓𝑀𝑂𝐷

   (13.8)  

 

The modulation index, , is of particular interest in FM modulation, since it determines the 

sideband levels.  Figure 13.1 gives a visual representation of how sinusoidal tone modulation 

would look as a function of frequency vs. time and voltage vs. time. 
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. 

  

Figure 13.1  Sinusoidal FM Modulation 

 

This concept of modulation index proves to be a fundamental cornerstone in understanding 

FM modulation and is useful to remember.  Continuing to calculate the spectrum from the 

modulation index, the next step is to write down the complex Fourier series for 𝑒𝑗∙𝛽∙𝑠𝑖𝑛(𝜔𝑚∙𝑡) 
(Tranter 1985). 

𝑒𝑗∙𝛽∙𝑠𝑖𝑛(𝜔𝑚∙𝑡) =  ∑ 𝑐𝑛

∞

𝑛= −∞

∙ 𝑒𝑗∙𝑛∙𝜔𝑚∙𝑡   (13.9)  

 

The calculation of the cn coefficient is as follows: 

 

𝑐𝑛 =  
𝜔𝑛
2𝜋

∙ ∫ 𝑒𝑗∙𝛽∙𝑠𝑖𝑛(𝜔𝑚∙𝑡) ∙ 𝑒𝑗∙𝑛∙𝜔𝑚∙𝑡
𝜋
𝜔𝑚⁄

−𝜋 𝜔𝑚⁄

 ∙ 𝑑𝑡  (13.10)  
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The next is to introduce the substitution 𝑥 → 𝜔𝑚 ∙ 𝑡 which also means that we have to 

substitute → 𝜔𝑚 ∙ 𝑑𝑡.   Performing this substitution yields the following. 

 

𝑐𝑛 =   
1

2𝜋
∙ ∫ 𝑒𝑗∙[𝑛∙𝑥−𝛽∙𝑠𝑖𝑛(𝑥)]

𝜋

−𝜋

 ∙ 𝑑𝑥  = 𝐽𝑛(𝛽) (13.11)  

 

The above expression is the integrated form of the Bessel function of the first kind of order n 

(Tranter 1985).  Therefore, (13.9) can be written as follows. 

 

𝑒𝑗∙𝛽∙𝑠𝑖𝑛(𝜔𝑚∙𝑡) =  ∑ 𝐽𝑛(𝛽)

∞

𝑛= −∞

∙ 𝑒𝑗∙𝑛∙𝜔𝑚∙𝑡   (13.12)  

 

This allows power spectral density to be simplified as follows (Tranter 1985): 

 

𝑉(𝑡) = 𝐴 ∙ 𝑐𝑜𝑠[𝜔0 ∙ 𝑡 +  𝛽 ∙ 𝑠𝑖𝑛(𝜔𝑚 ∙ 𝑡)] 

𝐴 ∙ 𝑅𝑒𝑎𝑙 {𝑒𝑗∙𝜔0∙𝑡 ∙ ∑ 𝐽𝑛(𝛽)

∞

𝑛= −∞

∙ 𝑒𝑗∙𝑛∙𝜔𝑚∙𝑡} 

= 𝐴 ∙ ∑ 𝐽𝑛(𝛽)

∞

𝑛= −∞

∙ 𝑐𝑜𝑠(𝜔0 ∙ 𝑡 + 𝑛 ∙ 𝜔𝑛 ∙ 𝑡) 

(13.13) 

 

From this expression, the sideband levels can be found by each of the coefficients. 

 

                                                   𝐶𝑎𝑟𝑟𝑖𝑒𝑟:                  𝐽0(𝛽)   ≈ 1 (13.14) 

 

𝐹𝑖𝑟𝑠𝑡 𝑆𝑖𝑑𝑒𝑏𝑎𝑛𝑑:             𝐽1(𝛽)   ≈
𝛽

2
 (13.15) 

 

𝑆𝑒𝑐𝑜𝑛𝑑 𝑆𝑖𝑑𝑒𝑏𝑎𝑛𝑑:             𝐽2(𝛽)   ≈
𝛽2

8
 (13.16) 

 

𝑛𝑡ℎ 𝑆𝑖𝑑𝑒𝑏𝑎𝑛𝑑:             𝐽𝑛(𝛽) (13.17) 
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Modulation Techniques 

Modulation of the Input Reference 

When the input reference is modulated, all modulation within the loop bandwidth is passed.  

The general rule of thumb is that the loop bandwidth should be twice the information 

bandwidth of the modulating signal.  Note the frequency deviation of the modulation is not 

changed at the output of the VCO.  This is for the same reason why the spurs of a signal after 

a divider have the same offset.  The modulation can be either phase or frequency, and the 

output modulation is of the same type.  This type of modulation is typically easy to implement.  

The transfer function for phase or frequency modulation is as follows: 

𝑇𝐼𝑛𝑝𝑢𝑡(𝑠) =  
1

𝑅
∙

𝐺(𝑠)

1 + 𝐺(𝑠)/𝑁
 (13.18)  

 

Provided that the modulation frequency is less than about two times loop bandwidth, this can 

be approximated by: 

𝑇𝐼𝑛𝑝𝑢𝑡(𝑠) ≈  
𝑁

𝑅
 (13.19)  

 

For example, if the modulating signal was a sinusoidal tone, then the output at the VCO would 

be a similar sinusoidal tone with the same modulation frequency, m, and with the frequency 

deviation, F, multiplied by N/R. 

 

Modulation of the Tuning Voltage or VCO 

The VCO can be thought of as a voltage to frequency converter.  It therefore follows that   FM 

modulation can be achieved by modulating this tuning voltage.  This can be done by adding a 

summing op-amp before the VCO or using a separate VCO modulation pin, if it has one.   

KMOD has units of MHz/V and represents the modulation constant, which is the amount the 

VCO frequency changes per a given voltage change on the modulation port.  Using this 

method, the transfer function for voltage to frequency is as follows: 

 

𝑇𝑉𝐶𝑂(𝑠) =  
𝐾𝑀𝑂𝐷

1 + 𝐺(𝑠)/𝑁
 (13.20)  

 

For this situation, modulation below the loop bandwidth frequency is attenuated, so the loop 

bandwidth of the PLL is typically chosen narrow relative to the modulation frequency.  In this 

case, the transfer function can be approximated as follows: 

 

𝑇𝑉𝐶𝑂(𝑠) ≈  𝐾𝑀𝑂𝐷 (13.21)  
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VCO Open Loop Modulation 

This is a special type of VCO modulation where the charge pump is disabled during the time 

of modulation.  The reason for doing this is to prevent the PLL from fighting the modulation.  

A drawback of this method is that the loop filter voltage will drift when the charge pump is 

off, so the time that the VCO can be modulated is limited by how fast the VCO drifts off 

frequency.  The charge pump leakage of the PLL is typically the dominant source of leakage, 

and the sum of the capacitors in the loop filter is a rough approximation for the effective 

capacitance that this leakage acts on for purposes of frequency drift calculations.  Because of 

this fact, designs with narrower loop bandwidth, higher charge pump currents, or higher 

comparison frequencies (as in Fractional N PLLs) tend to be more resistant to leakage due to 

the larger capacitor sizes.  There is typically a phase disturbance when the charge pump is 

engaged or disengaged, which needs to be taken into consideration.  The transfer function for 

open loop modulation is as follows: 

𝑇𝑉𝐶𝑂(𝑠) ≈  𝐾𝑀𝑂𝐷 (13.22)  

 

Dual Port Modulation 

With the exception of open loop modulation, the PLL fights the modulation inside or outside 

the loop bandwidth.  In dual port modulation, both the input reference and the VCO are 

modulated at the same time.  In this way, the modulations added together give the desired 

modulation without any distortion from the PLL.  If m(s) represents the desired modulation, 

then this modulation needs to be pre-distorted.  The modulation frequency (or phase) applied 

to the input reference needs to be multiplied by a factor of R/N and the modulation presented 

to the VCO needs to be divided by a factor of KMOD.  Applying this result to (13.19) and 

(13.20) shows that the modulation theoretically has an all-pass response. 

[
𝑅

𝑁
∙ 𝑚(𝑠)] ∙ [

1

𝑅
∙

𝐺(𝑠)

1 +
𝐺(𝑠)
𝑁

] + [
𝑚(𝑠)

𝐾𝑀𝑂𝐷
] ∙ [

𝐾𝑀𝑂𝐷

1 +
𝐺(𝑠)
𝑁

]  =  m(s) (13.23)  

 

There is theoretically no distortion.  However, due to delays in the phase detector, there may 

be some.  If a voltage phase detector is being used, instead of a charge pump, the modulation 

can be injected after this charge pump before and after the loop filter. 

 

Modulation of the N Counter  

For this modulation technique, the N counter value is modulated with information in order to 

produce a waveform.  The simplest example of this modulation is binary FSK that toggles the 

output between two frequencies, f1 and f2, which represent the two states of 0 and 1.  If these 

frequencies are farther apart, it is easier to discern the difference between them, but separating 

these frequencies farther consumes more spectrum.  The rate at which one toggles between 

the two frequencies is the transmission rate.  If more frequencies are used, as is the case in 4-

FSK or 8-PSK, then the spectrum required can be reduced.     
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A fractional PLL can be used to further enhance this method.  For instance, it can be used to 

approximate a Gaussian shaping for the transmitted signal in order to reduce intersymbol 

interference and reduce the bandwidth of the signal.  If there is sufficient resolution, this 

waveform can be digitally programmed in the PLL.  One consideration with this technique is 

that it is limited by the write speed to the PLL and is therefore best for lower data rate 

applications.  

For this application, data inside the loop bandwidth of the system is passed, and that outside 

of the loop bandwidth is attenuated.  As a rule of thumb, the loop bandwidth should be about 

twice the bandwidth of the modulated signal to avoid distorting the signal.  The transfer 

function is shown below: 

𝑇𝑁(𝑠) =  
𝐺(𝑠)

1 + 𝐺(𝑠)/𝑁
 (13.24)  

 

Provided that the loop bandwidth is wide relative to the modulation frequency, the transfer 

function can be approximated as follows: 

 

𝑇𝑁(𝑠) ≈  𝑁 (13.25)  

 

Another application where the N divider can be modulated is to create a ramp and chirp 

waveforms that are often used in radar applications.  In this sort of application, the fractional 

value in the N divider is dynamically adjusted.   The loop bandwidth needs to be wide enough 

to follow the slew rate of the desired waveform.   

 

Pre-Emphasis/Pre-Distortion 

In many types of PLL modulation, the PLL fights the modulation and the loop filter dynamics.  

The first way to compensate for this is to simply make the loop bandwidth sufficiently wide 

such that this is not an issue.  However, the loop bandwidth may be limited by spur 

requirements, phase noise requirements, or the phase detector frequency. Aside from dual-

port modulation, another technique that can be used to overcome this is pre-emphasis, also 

called pre-distortion.  In this technique, the signal is intentionally distorted before it is sent to 

the PLL in such a way that the distortion due to the loop bandwidth of the PLL cancels out 

this distortion, and the recovered signal is the intended one with no distortion.  For example, 

if the input reference is modulated, the Laplace transform of the pre-distortion function would 

be: 

𝑃(𝑠) = 𝑅 ∙  
1 + 𝐺(𝑠)/𝑁

𝐺(𝑠)
 (13.26)  

 

Another trivial type of pre-emphasis was already described in dual-port modulation, where 

the frequency deviation, f, presented to the R counter was multiplied by a factor of R.   
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Demodulation Techniques 

All the demodulation techniques discussed in this chapter involve using the carrier with 

modulation as an input reference to the PLL.  Whether phase demodulation or frequency 

demodulation is desired determines where the demodulated signal is monitored. 

 

Demodulation at the Tuning Voltage of the VCO 

If the modulation to be recovered is frequency modulation, then the voltage presented to the 

VCO has the following transfer function. 

 

𝑇(𝑠) =  
1

𝑅
∙

𝐺(𝑠)

1 + 𝐺(𝑠)/𝑁
∙
𝑠

𝐾𝑉𝐶𝑂
 (13.27)  

 

If the loop bandwidth is made wide, then this can be approximated as: 

 

𝑇(𝑠) ≈  
𝑁

𝑅
∙
𝑠

𝐾𝑉𝐶𝑂
 (13.28)  

 

Note that all of the factors are constant, except for the factor of s, which indicates 

differentiation.  So whatever modulation is input into the input reference, the tuning voltage 

will have the derivative of the input signal.  For this reason, the modulation signal at the input 

is first integrated (and possibly multiplied by a scaling factor), so that when it is differentiated, 

the intended signal is obtained.  Since frequency is the derivative of phase, this is why this 

modulation is regarded as frequency modulation.   

 

Demodulation at the Output of the Phase Detector  

Although the tuning voltage is easily accessible, it may require the extra step of the modulating 

signal be first integrated before it is sent.  If the modulation is retrieved at the output of the 

phase detector or the phase detector is a voltage phase detector, then this signal is easy to 

retrieve.  However, charge pump PLLs have mostly replaced voltage phase detectors, which 

complicates things, since this current output needs to be converted to a voltage.  One method 

is to put a small series sense resistor that develops a voltage that is proportional to the charge 

pump current.  If it is acceptable to lose polarity information, another method is to use the an 

analog lock detect mode, as this puts out negative pulses corresponding to when the charge 

pump turns on and is therefore proportional to the phase error.  For this method of 

demodulation, the transfer function is as follows: 

𝑇(𝑠) =  
1

𝑅
∙

𝐾𝐷
1 + 𝐺(𝑠)/𝑁

 (13.29)  
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The loop bandwidth is typically made narrow, and the transfer function can be approximated 

as: 

 

𝑇(𝑠) =  
𝐾𝐷
𝑅

 (13.30)  

 

KD is the voltage gain of the phase detector, neglecting the impact of the charge pump.  In the 

case that a charge pump PLL is being used and this is being extracted from the lock detect 

output or from a sense resistor, this would be the voltage produced divided by 2p. 

 

AM Demodulation 

AM modulation is typically not possible with a PLL alone.  However, there is an architecture 

known as the Costas Loop which can demodulate an AM signal.  In general, AM can be 

demodulated in other ways, but the Costas Loop is good when the carrier itself is weak.  This 

involves squaring the signal and using some dividers and is beyond the scope of this book. 

 

Conclusion 

Aside from providing a stable signal source, the PLL can also be used to modulate or 

demodulate data.  As discussed above, there are many approaches to this, each with their 

advantages and disadvantages.  Just because the PLL can be modulated with information does 

not mean that this is the only way to modulate or demodulate data.  It is very common in 

modern digital communications to not modulate the PLL and simply use it as a signal source. 
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Chapter 14      Stability of PLL Loop Filters 

 

Introduction 

Although there are many potential causes for a PLL to be unlocked, stability typically refers 

to issues with the causes that are evident from the closed loop analysis of the PLL.  The most 

common symptom of instability is for the VCO have very strong FM modulation that smears 

across the entire frequency range of the VCO.   In the frequency domain, it looks like the 

frequency is smearing over the spectrum. 

Some practical situations that can lead to instability could be a large change in the loop gain 

(KVCO, KPD, or N) from the intended design value, an unaccounted for VCO input capacitance, 

or accidental misplacements of components (such as swapping of loop filter capacitors C1 and 

C2).   

The first kind of stability discussed will be called discrete sampling stability, which is a 

requirement related to the discrete sampling action of the phase detector.   The second kind of 

stability will be called transfer function stability, which requires that the poles of the closed 

loop transfer function are in the right hand plane.  For this kind of stability, Routh’s Stability 

Criteria, is the most complete test for this, but there also exist the criteria of phase margin and 

gain margin that can be used as indicators as well. 

 

Discrete Sampling Stability 

The PLL charge pump is often modeled as having a continuous analog current that is 

proportional to the phase error at the phase detector.   However, the charge pump output is 

actually a pulse width modulated signal that has an average current proportional to the error 

at the phase detector.  The true criterion for the second order filter is discussed in reference 

[1] in depth, although the derivations are rather involved and there exists an easy to use rule 

of thumb.  When the loop bandwidth is less than about one-tenth of the phase detector 

frequency, approximating the charge pump output as an analog current is pretty accurate.  

Typically, when the loop bandwidth is between one-tenth and one-fifth of the phase detector 

frequency, the PLL will lock with some distortions in behavior.  These distortions can include 

an increase in lock time and a “cusping” effect on the phase noise near the phase detector 

offset frequency.  When the loop bandwidth approaches 28% of the phase detector frequency 

(which varies slightly with phase margin, gamma, and filter order), the loop filter will go 

unstable due to the discrete sampling action of the phase detector.   
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Figure 14.1  Example of Discrete Sampling Instability 

 

Figure 14.1 shows the transient response of a PLL that is unstable due to the discrete sampling 

effects of the phase detector.  The analog model approximates the output as a continuous 

current and misses the instability, but the discrete model shows it. 

  

Transfer Function Stability 

The transfer function will be stable if the poles of the closed loop transfer function have all 

negative real parts.  The poles show up as exponents in the time domain response and a 

negative real part of each pole means that the time domain response will converge to a final 

value over time.  There are methods, such as Routh’s Stability Criteria,  that can be used to 

determine if the poles all have all negative real parts without explicitly calculating them.  

 

Phase Margin 

Phase margin is commonly used that gives useful insight both the transient behavior, the 

peaking in the loop filter response, and stability.  However, it is not a perfect metric for 

stability.   Loop filters that have unstable transfer functions tend to have lower phase margin 

less than 20 degrees and filters with lower phase margin also tend to have more peaking in the 

closed loop response.  For this reason, low phase margin or large peaking in the closed loop 

response is often related to a filter being unstable, or close to that point.   This being said, it is 

possible to have very low phase margin (even 5 degrees) and have a loop filter that is perfectly 

stable.   So therefore, there is value introducing other metrics of stability that are more reliable 

and that give a better indication of how far a filter is from the point of becoming instability. 
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Gain Margin 

Gain margin is defined as the gain of the open loop transfer function at the frequency where 

the open loop phase is equal to 180 degrees.  Another way to view this is if one graphs 180 

degrees minus the open loop phase and calls this phase margin, then the gain margin would 

be the frequency where the phase margin is zero.  In the following figure at 100 kHz, the phase 

margin is 0 degrees and the open loop gain is about -31 dB.  So the gain margin would be 31 

dB in this case.   This theoretically means that the loop filter could tolerate a gain of 31 dB 

which would mean that the VCO gain, charge pump gain, or phase detector could increase by 

a factor of about 1259 times before the loop filter would have an unstable transfer function.  

In other words, this loop filter is very stable. 

 

 

Figure 14.2  Gain Margin Example 

 

Gain margin can be observed from a graph, but it can also be calculated with a closed form 

solution.   To do this, the first step is to find the frequency, GM, where the phase margin is 

zero degrees. 

 

𝑡𝑎𝑛−1(𝑇2 ∙ 𝜔𝐺𝑀) − 𝑡𝑎𝑛
−1(𝑇1 ∙ 𝜔𝐺𝑀) − 𝑡𝑎𝑛

−1(𝑇3 ∙ 𝜔𝐺𝑀)
− 𝑡𝑎𝑛−1(𝑇4 ∙ 𝜔𝐺𝑀) =  π 

(14.1)  

 

Taking the tangent function of both sides and solving for the gain margin frequency yields the 

following result: 
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𝜔𝐺𝑀 = √
𝑇2 − 𝑇1 − 𝑇3 − 𝑇4

𝑇1 ∙ 𝑇2 ∙ 𝑇3 + 𝑇1 ∙ 𝑇2 ∙ 𝑇4 + 𝑇2 ∙ 𝑇3 ∙ 𝑇4 − 𝑇1 ∙ 𝑇3 ∙ 𝑇4
 (14.2)  

 

For the purposes of simplifying calculations and also to resolve any concerns that one may 

have about the pathological case of a fourth order filter with complex poles, one can also 

express this in terms of the filter constants. 

 

𝜔𝐺𝑀 = √
𝑇2 ∙ 𝐴0 − 𝐴1

𝑇2 ∙ 𝐴2 − 𝐴3
 (14.3)  

 

Provided that this frequency is greater than the loop bandwidth, the gain margin will be greater 

than zero.  It turns out that for the second order loop filter, the gain margin is infinite.  Later 

on, it will be shown that the gain margin in combination with a requirement of poles is a 

necessary and sufficient requirement for Pole Stability. 

 

Routh’s Stability Criteria 

This method allows one to check if all the poles of the PLL closed loop transfer function are 

in the left hand plane without having to explicitly calculate them.  It involves creation of a 

Routh table from coefficients to determine stability.  The system is stable if and only if all the 

elements in the first column of this array are positive.   

The first step is to get the coefficients for this table.  The open loop transfer function for a 

loop filter up to 4th order can be expressed as follows: 

 

𝑇(𝑠) =  
𝑁 ∙ 𝐾 ∙ (1 + 𝑠 ∙ 𝑇2)

𝑠2 ∙ (𝐴3 ∙ 𝑠3 + 𝐴2 ∙ 𝑠2 + 𝐴1 ∙ 𝑠 + 𝐴0)
 (14.4)  

 

𝐾 =  
𝐾𝑃𝐷 ∙ 𝐾𝑉𝐶𝑂

𝑁
 (14.5)  

 

The closed loop transfer function is as follows: 

 

𝐺(𝑠) 

1 +
𝐺(𝑠)

𝑁⁄
 =   

𝑁 ∙ 𝐾 ∙ (1 + 𝑠 ∙ 𝑇2)

𝐴3 ∙ 𝑠5 + 𝐴2 ∙ 𝑠4 + 𝐴1 ∙ 𝑠3 + 𝐴0 ∙ 𝑠2 + 𝑇2 ∙ 𝐾 ∙ 𝑠 + 𝐾
 (14.6)  
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The Routh table is formed by forming the first row with the highest order term, then third 

highest order term, and so on.  The second row starts with the second highest order term, 

fourth highest order term, and so on.  The rows starting with row three and higher are 

formed by taking the negative of the determinant of the 2 x 2 matrix formed by eliminating 

the column that the entry of interest is in and dividing by the first entry in the row above the 

entry of interest.   Any row can be multiplied by a positive constant without affecting 

stability.  Since all the filter coefficients are positive, this means that the denominator 

portions of the formulas may be disregarded. 

    

sn dn dn-2 dn-4 ... 

sn-1 dn-1 dn-3 dn-5 ... 

 𝑏1 = 
𝑑𝑛−1 ∙ 𝑑𝑛−2 − 𝑑𝑛 ∙ 𝑑𝑛−3

𝑑𝑛−1
 𝑏2 = 

𝑑𝑛−1 ∙ 𝑑𝑛−4 − 𝑑𝑛 ∙ 𝑑𝑛−5
𝑑𝑛−1

 ... ... 

 𝑐1 = 
𝑏1 ∙ 𝑑𝑛−3 − 𝑏2 ∙ 𝑑𝑛−1

𝑏1
 ... ... ... 

Table 14.1 A Generic Routh Table 

 

Key Results Regarding Pole Stability 

Summarizing results, we see that Routh’s stability criteria implies that a gain margin greater 

than one with a pole constraint is a necessary and sufficient condition for pole stability.   

 

Filter 

Order 
GM Gain Margin 

Pole 

Constraint 

2 Infinite Infinite T2 > T1 

3 √
𝑇2 ∙ 𝐴0 − 𝐴1

𝑇2 ∙ 𝐴2
 

𝐴1 ∙  | 𝑇2 ∙ 𝐴0 − 𝐴1 |

𝐾 ∙ 𝑇22 ∙ 𝐴2
 T2 > T1+T3 

4 
√
𝑇2 ∙ 𝐴0 − 𝐴1

𝑇2 ∙ 𝐴2 − 𝐴3
 

 

 | (𝑇2 ∙ 𝐴0 − 𝐴1) ∙ (𝐴2 ∙ 𝐴1 − 𝐴0 ∙ 𝐴3) |

𝐾 ∙ (𝑇2 ∙ 𝐴2 − 𝐴3)2
 

T2 > 

T1+T3+T4 

Table 14.2 Gain Margin Calculations 
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Conclusion 

The types of stability for loop filters have been investigated.  Discrete sampling instability 

occurs when the loop bandwidth is not sufficiently narrow relative to the phase detector 

frequency.  Transfer function instability will result the poles of the closed loop transfer 

function do not all have negative real parts.  It can be shown that this requirement is equivalent 

to the zero in the loop filter being greater than the sum of the poles of the filter and the gain 

margin being greater than one.   

With the gain margin constraint, this can be met if the loop gain is reduced sufficiently, which 

can be done if one can sufficiently reduce the charge pump gain, VCO gain, or increase the N 

divider value.   The pole constraint gain is independent of the loop gain and if this is not 

satisfied, then the filter will always be unstable.   However, if the R2 or C2 component is made 

sufficiently large, eventually the pole constraint will be met as well. 

From a stability standpoint, the second order filter is the most stable as there is no gain margin 

constraint and the pole constraint is always met, except for when the Active A filter is used.  

For the third and fourth order filter, one common diagnostic is to lower the charge pump gain.  

Not always, but often this will fix stability issues as it fixes the gain margin constraint.    

The most common causes for pole stability are not accounting for a large VCO input 

capacitance, having too large of a higher order pole, or accidentally swapping C1 and C2 in 

the loop filter when soldering. 
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Appendix:    Key Results from Routh’s Stability Criteria 

 

Proof of Routh Stability for a Second Order Filter 

The second order loop filter is a special case where A3 = A2 = 0. 

 

s3 𝐴1 = 𝑇1 ∙ 𝐴0 𝑇2 ∙ 𝐾 

s2 A0 K 

 𝐾 ∙ 𝐴0 ∙ (𝑇2 − 𝑇1) 0 

 K 0 

Table 14.3 Routh Table for Second Order Loop Filter 

  

Now from the definition of K, it is clear that K>0.  From the third row, this puts the restriction 

that T2 > T1.  For a second order (except for the Active A),  this is always the case because: 

 

𝑇2 =  𝐶2 ∙ 𝑅2 (14.7)  

 

𝑇1 =  𝑇2 ∙
𝐶1

𝐶1 + 𝐶2
 (14.8)  
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Appendix B: Derivations for the Third Order Filter 

Calculation of Gain Margin 

The gain margin frequency is simply found by setting A3=0. 

 

 

𝜔𝐺𝑀 = √
𝑇2 ∙ 𝐴0 − 𝐴1

𝑇2 ∙ 𝐴2
 (14.9)  

 

 

To find the actual gain margin, plug this in the closed loop expression: 

 

|𝐺(𝑗 ∙ 𝜔𝐺𝑀)| =  
𝐾

(𝜔𝐺𝑀)2
∙ |

1 + (𝑗 ∙ 𝜔𝐺𝑀) ∙ 𝑇2

𝐴2 ∙ (𝑗 ∙ 𝜔𝐺𝑀)2 + 𝐴1 ∙ (𝑗 ∙ 𝜔𝐺𝑀) + 𝐴0
| (14.10)  

 

Now substitute the expression for the gain margin frequency 

 

|𝐺(𝑗 ∙ 𝜔𝐺𝑀)| =
𝐾

(
𝑇2 ∙ 𝐴0 − 𝐴1
𝑇2 ∙ 𝐴2

)
∙ √

1 + (
𝑇2 ∙ 𝐴0 − 𝐴1
𝑇2 ∙ 𝐴2

) ∙ 𝑇22

(𝐴0 − 𝐴2 ∙ (
𝑇2 ∙ 𝐴0 − 𝐴1
𝑇2 ∙ 𝐴2

))

2

+ 𝐴12 ∙ (
𝑇2 ∙ 𝐴0 − 𝐴1
𝑇2 ∙ 𝐴2

)

 (14.11)  

 

Now do some simplifications: 

 

|𝐺(𝑗 ∙ 𝜔𝐺𝑀)| =
𝐾 ∙ 𝐴2 ∙ 𝑇2

|𝑇2 ∙ 𝐴0 − 𝐴1|
∙ √

1 + 
𝐴0 ∙ 𝑇22

𝐴2 −
𝐴1 ∙ 𝑇2
𝐴2

𝐴12

𝑇22
∙ (1 + 

𝐴0 ∙ 𝑇22

𝐴2 −
𝐴1 ∙ 𝑇2
𝐴2

)
 (14.12)  

 

Gain Margin is the reciprocal of this gain, so the final result after simplifications is: 

 

𝐺𝑎𝑖𝑛 𝑀𝑎𝑟𝑔𝑖𝑛 =  
𝐴1 ∙ |𝑇2 ∙ 𝐴0 − 𝐴1|

𝐾 ∙ 𝐴2 ∙ 𝑇22
 (14.13)  
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Analysis Using Routh’s Stability Criteria 

For the third order filter, the Routh Table is as follows. 

 

s4 A2 A0 K 

s3 A1 𝑇2 ∙ 𝐾 0 

 𝐴1 ∙ 𝐴0 − 𝐾 ∙ 𝐴2 ∙ 𝑇2 = 𝑥 𝐴1 ∙ 𝐾 0 

 𝐾 ∙ (𝑇2 ∙ 𝑥 − 𝐴12) 0 0 

 𝐾2 ∙ 𝐴1 ∙ (𝑇2 ∙ 𝑥 − 𝐴12) 0 0 

Table 14.4 Third Order Routh Stability Table 

 

The elements in the third, fourth, and fifth rows will all be positive provided that: 

 

𝑇2 ∙ 𝑥 − 𝐴12 > 0 (14.14)  

 

If this is expressed in terms of filter coefficients, then the following rule can be derived: 

 

𝐴1

𝐾
∙
𝑇2 ∙ 𝐴0 − 𝐴1

𝑇22 ∙ 𝐴2
> 1 (14.15)  

 

Comparing this expression to the one for gain margin, it is very similar except that we need 

to ensure that the expression T2∙A0 − A1 is not negative.  To see the conditions required to 

make this true, substitute in the poles of the filter to find an additional constraint. 

 

𝑇1 + 𝑇3

𝐾 ∙ 𝑇22
∙ 𝐴0 ∙ (𝑇2 − 𝑇1 − 𝑇3) > 1 (14.16)  

 

This constraint will be met provided the following condition is met. 

 

𝑇2 > 𝑇1 + 𝑇3 (14.17)  

 

From these rules, the practical learning is that the gain margin is a measure of stability.   The 

simple rule regarding the poles is sometimes a useful check because gain margin is often 

expressed in terms of dB and this gives clarity to the case where it is negative. 
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Derivations for the Fourth Order Loop Filter 

Calculation of Gain Margin 

The gain margin frequency has been found. 

 

𝜔𝐺𝑀 = √
𝑇2 ∙ 𝐴0 − 𝐴1

𝑇2 ∙ 𝐴2 − 𝐴3
 (14.18)  

 

To find the actual gain margin, plug this in the closed loop expression: 

 

|𝐺(𝑗 ∙ 𝜔𝐺𝑀)| =  
𝐾

(𝜔𝐺𝑀)
2
∙ |

1 + (𝑗 ∙ 𝜔𝐺𝑀) ∙ 𝑇2

𝐴3 ∙ (𝑗 ∙ 𝜔𝐺𝑀)
2  + 𝐴2 ∙ (𝑗 ∙ 𝜔𝐺𝑀)

2 + 𝐴1 ∙ (𝑗 ∙ 𝜔𝐺𝑀) + 𝐴0
| (14.19)  

 

Now substitute the expression for the gain margin Frequency 

 

|𝐺(𝑗 ∙ 𝜔𝐺𝑀)| =  
𝐾

|
𝑇2 ∙ 𝐴0 − 𝐴1
𝑇2 ∙ 𝐴2 − 𝐴3

|
∙ √

1 + (
𝑇2 ∙ 𝐴0 − 𝐴1
𝑇2 ∙ 𝐴2 − 𝐴3

) ∙ 𝑇22

(𝐴0 − 𝐴2 ∙ (
𝑇2 ∙ 𝐴0 − 𝐴1
𝑇2 ∙ 𝐴2 − 𝐴3

))

2

+ (
𝑇2 ∙ 𝐴0 − 𝐴1
𝑇2 ∙ 𝐴2 − 𝐴3

) ∙ (𝐴1 − 𝐴3 ∙ (
𝑇2 ∙ 𝐴0 − 𝐴1
𝑇2 ∙ 𝐴2 − 𝐴3

))

 (14.20)  

 

Now do some simplifications 

 

|𝐺(𝑗 ∙ 𝜔𝐺𝑀)| =  
𝐾 ∙ |𝑇2 ∙ 𝐴2 − 𝐴3|

|𝑇2 ∙ 𝐴0 − 𝐴1|
∙ √

1 + (
𝑇2 ∙ 𝐴0 − 𝐴1
𝑇2 ∙ 𝐴2 − 𝐴3

) ∙ 𝑇22

(𝐴1 ∙ 𝐴2 − 𝐴0 ∙ 𝐴3)2

(𝑇2 ∙ 𝐴3 − 𝐴3)2
[1 + (

𝑇2 ∙ 𝐴0 − 𝐴1
𝑇2 ∙ 𝐴2 − 𝐴3

) ∙ 𝑇22]
 (14.21)  

 

Gain Margin is the reciprocal of this gain, so the final result after simplifications is: 

 

𝐺𝑎𝑖𝑛 𝑀𝑎𝑟𝑔𝑖𝑛 =  
|(𝑇2 ∙ 𝐴0 − 𝐴1) ∙ (𝐴2 ∙ 𝐴1 − 𝐴0 ∙ 𝐴3)|

𝐾 ∙ (𝑇2 ∙ 𝐴2 − 𝐴3)2
 (14.22)  
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Conditions for Fourth Order Loop Filter Routh Stability 

For the fourth order filter, there is some added complexity, but the general rule remains the 

same.  There is a restriction on high the loop gain, K, can be, and also there is a restriction that 

T2 > T1 + T3 + T4.   Table 14.5 shows the coefficients for a fourth order loop filter. 

 

s5 A3 A1 𝑇2 ∙ 𝐾 
s4 A2 A0 K 

s3 𝐴2 ∙ 𝐴1 − 𝐴0 ∙ 𝐴3 = 𝑥 𝐾 ∙ (𝐴2 ∙ 𝑇2 − 𝐴3) = 𝐾 ∙ 𝑦 0 

 𝐴0 ∙ 𝑥 − 𝐴2 ∙ 𝐾 ∙ 𝑦 𝐾 ∙ 𝑥 0 

 𝐾 ∙ 𝑦 ∙ (𝐴0 ∙ 𝑥 − 𝐴2 ∙ 𝐾 ∙ 𝑦) − 𝐾 ∙ 𝑥2 0 0 

 𝐾 ∙ 𝑥 ∙ [𝑦 ∙ (𝐴0 ∙ 𝑥 − 𝐴2 ∙ 𝐾 ∙ 𝑦) − 𝐾 ∙ 𝑥2] 0 0 

Table 14.5 Fourth Order Routh Stability Table 

 

This imposes three constraints: 

 

𝐴2 ∙ 𝐴1 − 𝐴0 ∙ 𝐴3 > 0 (14.23)  

 

𝐴0 ∙ 𝑥 − 𝐴2 ∙ 𝐾 ∙ 𝑦 > 0 (14.24)  

 

𝑦 ∙ (𝐴0 ∙ 𝑥 − 𝐴2 ∙ 𝐾 ∙ 𝑦) − x2 > 0 (14.25)  

 

If one substitutes in the time constants in place of the filter coefficients, we find easily find 

that the first constraint is always satisfied provided restriction (14.31) is assumed.   

The third constraint implies that: 

 

𝑥 ∙ 𝑦 ∙ 𝐴0 − 𝐴2 ∙ 𝑦2 ∙ K − x2 > 0 (14.26)  

 

This can be rearranged to say the following: 

 

(𝐴2 ∙ 𝐴1 − 𝐴0 ∙ 𝐴3) ∙ (𝐴2 ∙ 𝑇2 − 𝐴3) − (𝐴2 ∙ 𝐴1 − 𝐴0 ∙ 𝐴3)2

𝐾 ∙ (𝐴2 ∙ 𝑇2 − 𝐴3)2 ∙ 𝐴2
> 1 (14.27)  
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After some labor, we get the following: 

 

(𝑇2 ∙ 𝐴0 − 𝐴1) ∙ (𝐴2 ∙ 𝐴1 − 𝐴0 ∙ 𝐴3)

𝐾 ∙ (𝐴2 ∙ 𝑇2 − 𝐴3)2
> 1 (14.28)  

 

This simplifies to the constraint of: 

 

(𝑇2 ∙ 𝐴0 − 𝐴1) ∙ (𝐴2 ∙ 𝐴1 − 𝐴0 ∙ 𝐴3)

𝐾 ∙ (𝐴2 ∙ 𝑇2 − 𝐴3)2
> 1 (14.29)  

 

This constraint looks almost identical to the gain margin without the absolute value signs.     

The denominator is always positive and the right side term on the numerator is positive.  This 

leaves a constraint on the other side to be positive.  In other words 

 

𝑇2 ∙ 𝐴0 − 𝐴1 > 0 (14.30)  

This simplifies to the expected constraint of 

 

𝑇2 > 𝑇1 + 𝑇3 + 𝑇4 (14.31)  

 

Just as in the third order case, Routh’s stability criteria imply that the gain margin is greater 

than zero and T2 is greater than the sum of the poles. 
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Chapter 15      A Sample Loop Filter Analysis 

Introduction 

This chapter is an example of a PLL analysis that applies many of the formulas and concepts 

that were derived in previous chapters.   

Symbol Description Value Units 

KPD Charge Pump Gain 5 mA 

KVCO VCO Gain 30 MHz/V 

fVCO Output Frequency 900 MHz 

fPD Phase detector frequency 200 kHz 

C1 Loop Filter Capacitor 5.600 nF 

C2 Loop Filter Capacitor 100.00 nF 

C3 Loop Filter Capacitor 0.330 nF 

C4* 

Loop Filter Capacitor 

*(Not Accounting For 

VCO input Capacitance) 

0.082 nF 

CVCO VCO Input Capacitance 0.022 nF 

R2 Loop Filter Resistor 1.0 kW 

R3 Loop Filter Resistor 6.8 kW 

R4 Loop Filter Resistor 33.0 kW 

Table 15.1 Sample Loop Filter 

 

Calculate Basic Parameters 

𝑁 = 
𝑓𝑃𝐷
𝑓𝑉𝐶𝑂

 (15.1)  

 

𝐶4 = 𝐶4∗  + 𝐶𝑉𝐶𝑂 
(15.2)  

 

𝐴0 = 𝐶1 + 𝐶2 + 𝐶3 + 𝐶4 
(15.3)  

 

𝐴1 = 𝐶2 ∙ 𝑅2 ∙ (𝐶1 + 𝐶3 + 𝐶4) + 𝑅3 ∙ (𝐶1 + 𝐶2) ∙ (𝐶3 + 𝐶4) 

+𝐶4 ∙ 𝑅4 ∙ (𝐶1 + 𝐶2 + 𝐶3) 

(15.4)  

𝐴2 = 𝐶1 ∙ 𝐶2 ∙ 𝑅2 ∙ 𝑅3 ∙ (𝐶3 + 𝐶4) 

         + 𝐶4 ∙ 𝑅4 ∙ (𝐶2 ∙ 𝐶3 ∙ 𝑅3 + 𝐶1 ∙ 𝐶3 ∙ 𝑅3 + 𝐶1 ∙ 𝐶2 ∙ 𝑅2 + 𝐶2 ∙ 𝐶3
∙ 𝑅2) 

(15.5)  

 

𝐴3 = 𝐶1 ∙ 𝐶2 ∙ 𝐶3 ∙ 𝐶4 ∙ 𝑅2 ∙ 𝑅3 ∙ 𝑅4 
(15.6) 
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Start with the loop filter transfer function. 

 

𝑍(𝑠) =  
1 + 𝑠 ∙ 𝐶2 ∙ 𝑅2

𝑠 ∙ (𝐴3 ∙ 𝑠3 + 𝐴2 ∙ 𝑠2 + 𝐴1 ∙ 𝑠 + 𝐴0)
 (15.7)  

 

𝐺(𝑠) =  
𝐾𝑃𝐷 ∙ 𝐾𝑉𝐶𝑂 ∙ 𝑍(𝑠)

𝑠
 (15.8)  

 

BW, the loop bandwidth can be found by numerically solving the following equation. 

 

‖𝐺(𝐵𝑊 ∙ 2𝜋 ∙ 𝑖)‖ = 𝑁 (15.9)  

 

Once BW is known, the phase margin and gamma optimization parameter can also be 

calculated. 

f = 𝐺(𝐵𝑊 ∙ 2𝜋 ∙ 𝑗) + 180° (15.10)  

 

𝛾 =
(𝐵𝑊 ∙ 2𝜋)2 ∙ 𝐶2 ∙ 𝑅1 ∙ 𝐴1

𝐴0
 (15.11)  

 

 

Symbol Description Value Units 

N N Counter Value 4500 none 

C4 
Loop Filter Capacitor accounting for VCO input 

Capacitance 
0.104 nF 

A0 Total Capacitance 106.0340 nF 

A1 First order loop filter coefficient 1.2786 x 10-3  nF∙s 

A2 Second Order loop filter coefficient 4.5011 x 10-9 nF∙s2 

A3 Third Order loop filter coefficient   4.3128 x 10-15 nF∙s3 

BW Loop Bandwidth 5.0857 kHz 

f Phase Margin 50.7527 degrees 

 Gamma Optimization Parameter 1.2313 none 

Table 15.2 Calculated Filter Coefficients and Parameters 
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Finding the Poles and Zero 

Solving for T1 is the hard part.  First a cubic polynomial must be solved, and the results 

need to be manipulated in order to obtain T1.  Once T1 is known, the other poles are easy to 

find.  The following cubic polynomial needs to be solved for x, and then y can be calculated. 

 

𝑥3 − 2 ∙
𝐴1

𝐴0
∙ 𝑥2 + (

𝐴12

𝐴02
+
𝐴2

𝐴0
) ∙ 𝑥 + (

𝐴3

𝐴0
− 
𝐴1 ∙ 𝐴2

𝐴02
) = 0 (15.12)  

 

𝑦 = x2 − 
𝐴1

𝐴0
∙ 𝑥 +

𝐴2

𝐴0
 (15.13)  

 

𝑇3, 𝑇4 =
x ± √𝑥2 − 4 ∙ 𝑦

2
 (15.14)  

 

𝑇1 =
A3

𝐴0 ∙ 𝑦
 (15.15)  

 

Now that the poles are known, reorder them such that: 

 

𝑇1 ≥ 𝑇3 ≥ 𝑇4 (15.16)  

 

Calculate the zero. 

𝑇2 = 𝐶2 ∙ 𝑅2 (15.17)  
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Symbol Description Value Units 

x Intermediate Calculation 1.0498 x 10-5 s 

y Intermediate Calculation   2.6072 x 10-11 s2 

T1 Loop Filter Pole 6.4665 x 10-6 s 

T2 Loop Filter Zero 1.0000 x 10-4 s 

T3 Loop Filter Pole 4.0318 x 10-6 s 

T4 Loop Filter Pole 1.5601 x 10-6 s 

1T

3T
 Pole Ratio 62.3481 % 

3T

4T
 Pole Ratio 38.6947 % 

12

1

Tp
 Frequency of Loop Filter Pole 24.6121 kHz 

22

1

Tp
 Frequency of Loop Filter Zero 1.5915 kHz 

32

1

Tp
 Frequency of Loop Filter Pole 39.4753 kHz 

42

1

Tp
 Frequency of Loop Filter Pole 102.0173 kHz 

Table 15.3 Calculated Filter Poles 

 

Figure 15.1  Loop Filter Transfer Functions 



   

 

 

 

 

 Spurs 
 

 

 

 

Spectrum 10 dB / REF -8.7 dBm -35.919  dB

25  kHz

Mkr

SWP    296.7 msec

SPAN    200 kHz

VBW    1 kHzRBW    1 kHzATN    0  dB

CENTER    2.400025   GHz LO    2.3739   GHz

Avg

16

 

 

 





Direct Spurs  

 

121 

 

Chapter 16      Direct Spurs 

 

Introduction 

Modulated Spurs vs. Direct Spurs 

The two broad classes that spurs can be divided into are Modulated Spurs and Direct Spurs.    

Modulated spurs occur at equal offset from the right and left of the carrier and are the result 

of the carrier being modulated;  these will be discussed later.  Direct PLL spurs are those that 

appear at the output and are not the result of the VCO or the output buffer being modulated.   

 

Spur Type Direct Modulated 

Intended 

Signal 
𝐴 ∙ 𝑠𝑖𝑛(2𝜋 ∙ 𝑓𝑜𝑢𝑡 ∙ 𝑡) 

Unintended 

Signal 
𝐵 ∙ 𝑠𝑖𝑛(2𝜋 ∙ 𝑓𝑆𝑝𝑢𝑟 ∙ 𝑡) 

Total Signal 

 

𝐴 ∙ 𝑠𝑖𝑛(2𝜋 ∙ 𝑓𝑜𝑢𝑡 ∙ 𝑡) 

+ 𝐵 ∙ 𝑠𝑖𝑛(2𝜋 ∙ 𝑓𝑆𝑝𝑢𝑟 ∙ 𝑡) 

𝐴 ∙ 𝐵 ∙ 𝑠𝑖𝑛(2𝜋 ∙ 𝑓𝑜𝑢𝑡 ∙ 𝑡)

∙ 𝑠𝑖𝑛(2𝜋 ∙ 𝑓𝑆𝑝𝑢𝑟 ∙ 𝑡) 

= 
𝐴 ∙ 𝐵

2
∙ 𝑠𝑖𝑛(2𝜋 ∙ (𝑓𝑜𝑢𝑡 − 𝑓𝑆𝑝𝑢𝑟) ∙ 𝑡) 

− 
𝐴 ∙ 𝐵

2
∙ 𝑠𝑖𝑛(2𝜋 ∙ (𝑓𝑜𝑢𝑡 + 𝑓𝑆𝑝𝑢𝑟) ∙ 𝑡) 

 

Spur 

Frequencies 
𝑓𝑆𝑝𝑢𝑟 𝑓𝑆𝑝𝑢𝑟  ± 𝑓𝑜𝑢𝑡 

Table 16.1 Comparison between Direct and Modulated Spurs 

 

Direct PLL spurs tend to involve much less PLL theory and loop dynamics then their 

counterparts, but nonetheless are important to understand.    
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Common Direct Spur Types 

The following table gives some of the more common types of direct PLL spurs: 

 

Spur Type Frequency Comment 

External Crosstalk Varies 
These spurs tend to be not by sources external to the 

PLL, such as power supply. 

Output and 

VCO Harmonics 

k∙fVCO 

k=2,3,4,… 

Occur at multiples of the VCO frequency with odd 

harmonics tending to be stronger.   

Output ½ 

Harmonic 
fOUT/2 

Occurs when there is a doubler after the VCO and the 

fundamental VCO frequency leaks through. 

OSCin 

Harmonics 

k∙fOSC 

k>2,3,4,… 

Occur at multiples of the OSCin frequency, in a 

similar way to VCO harmonics. 

Phase Detector 

Harmonics 

k∙fPD 

k=2,3,4,… 

Occur at multiples of the phase detector frequency.  

For PLLs used in fractional mode there can also be a 

collection of spurs near this frequency. 

MASH Engine 

Spurs 

Near fPD and 

fPD/2 

This tends to be a family of spurs that only happens 

for delta sigma fractional PLLs due to noise from the 

MASH engine. 

Output to Output 

Spurs 

fOUT  from 

another 

output 

These spurs are the direct output from another PLL or 

output.  For instance, if a clocking device was to have 

an output of 200 and 300 MHz, then there would be a 

200 MHz spur on the 300 MHz output 

Table 16.2 Types of Direct Spurs 

 

External Crosstalk Spur 

Description and Diagnosis 

The external crosstalk spur is a generic term for any spur that occurs that is not related to the 

PLL.  When the PLL is powered down with the rest of the circuit running, this spur persists.   

 

Cause and Mitigation 

This spur could be the result of power supplies, lights, computer screens, other devices on the 

PCB, a spur riding on the input signal, or even something being produced by the spectrum 

analyzer itself.  The general way to approach this spur is start systematically eliminating 

causes until it is found.  If nothing seems to make it go away,  try driving the spectrum analyzer 

directly with a signal generator to ensure that the spur is not inherent to the test setup.  
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Output and VCO Harmonics 

Description and Diagnosis 

These spurs appear at the VCO frequency and multiples thereof and change with the VCO 

frequency.  All VCOs put out harmonics of some kind that occur at multiples of the desired 

frequency.    Sometimes odd harmonics may actually be desired if in the right proportions, 

such as the case for the odd harmonics of a square wave.  However, even harmonics are never 

desirable and the odd harmonics in the wrong proportions are also not good.  Harmonics can 

be a concern if they trick the PLL input pin to count them instead of the fundamental signal.   

As a rule of thumb, it is good to have the second harmonic 20 dB down if possible, but that is 

very dependent on the matching and the sensitivity of the PLL.   

 

Cause and Mitigation 

VCOs are part specific in what level of harmonics they produce, but they all produce undesired 

harmonics of the fundamental frequency.  For a differential output, unequal termination of the 

unused side can cause high harmonics.   If the VCO harmonics cause a problem, there are 

several things that can be done to reduce their impact.  They can be low pass filtered with LC 

or RC filters.  A resistor or inductor can be placed in series at the fin pin to prevent them from 

causing the prescaler to miscount.   Matching is also important and having short traces and 

good matching can stop the harmonic from causing the prescaler to miscount.  Note also that 

the many PLLs do not have 50 W input impedance and treating it as such often can cause 

matching issues. 

 

Output ½ Harmonic 

Description and Diagnosis 

This spur occurs at a frequency equal to ½ of the output frequency.   When the VCO frequency 

is changed, this spur will stay at half of the output frequency. 

 

Cause and Mitigation 

The most common cause of this spur is when a doubler is used after a VCO to get a higher 

frequency.  In this case, the fundamental VCO frequency leaks to the output and the spur 

occurs.  This spur is PLL specific, so one solution is to choose another device, perhaps one 

that does not use a doubler.   Aside from that, this spur can also be removed by an external 

filter on the output. 
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OSCin Harmonics 

Description and Diagnosis 

This spur is visible at an offset from the carrier equal to some multiple of the input frequency.  

It is very common for this to be a whole family of harmonics, with the odd harmonics being 

stronger than the even harmonics.  This spur sometimes is reduced if the power supply to the 

input buffer is reduced and sometimes goes away of the PLL is driven with an external signal 

generator. 

 

Cause and Mitigation    

In the case that source of the OSCin signal is completely external to the PLL, this spur is often 

impacted by the format of this signal, in particular if the amplitude is higher.  As a general 

recommendation, lower amplitude and higher slew rate input signals are desired. Sometimes 

putting filters to reduce the harmonics of the input signal can also be helpful in this case. 

In the case that the source of the OSCin signal includes a crystal that uses an inverter on the 

PLL chip, this spur is often the result of excessive gain of this inverter.   Some mitigation 

techniques may include reducing the input voltage to the inverting buffer, putting a series 

resistor at the output of the inverter, or putting a slightly larger load capacitor at the output of 

the inverter.   The only caution with these approaches is to ensure that these changes are not 

too drastic as they can impact the oscillation of the crystal circuit. 

 

Phase Detector Harmonics 

Description and Diagnosis 

This spur appears at multiples of the phase detector frequency.   Sometimes, it goes away or 

is reduced when the charge pump is powered down. 

 

Cause and Mitigation 

Phase detector harmonics are typically caused by the phase detector noise getting to the output.  

Often a supply pin to the charge pump can inject spur energy onto the ground plane or power 

supply.  For diagnostic purposes, try lowering the charge pump gain to see if it has an impact 

on this spur.  If the charge pump is suspected to be the cause, sometimes this spur can be 

reduced by isolating the charge pump supply pin with series resistance or inductance.   
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MASH Engine Spurs 

Description and Diagnosis  

This is a collection of spurs at a frequency around fPD/ and fPD/2.  They only occur in fractional 

PLLs.  When the fractional part of the PLL is powered down, or the fractional numerator is 

set to zero with dithering disabled, the spur goes away. 

 

Cause and Mitigation 

When the MASH engine is running, it creates a lot of fractional noise that may find its way to 

the output.  If the crosstalk is internal to the chip, then the only mitigation is to tinker with the 

fractional settings.  However, in many cases, it can be caused by board crosstalk and isolating 

the power supply pin to the MASH engine may help.  Also realize that if one puts a shunt 

capacitor on the power supply pin to the MASH engine or the charge pump supply, it can 

transfer spur energy to the ground plane that can later show up at the output. 

 

Output to Output Spurs 

Description and Diagnosis 

This spur occurs when there are two outputs running at different frequencies.   For instance, 

if one output is 400 MHz and one output is 500 MHz, then one can observe a 400 MHz spur 

on the 500 MHz output.  When the output not being observed is powered down, the spur goes 

away.   The spur tends to be more of an issue for outputs that are closer together or ones that 

share dividers or buffers internal to the chip. 

 

Cause and Mitigation 

This spur is caused by crosstalk between outputs.   This crosstalk can be on the die of the chip, 

across bond wires, or on the board.   When there is some flexibility of choice, planning which 

frequency goes on which output has a large impact on this spur.  For instance, put the same 

frequencies on outputs that are known to have lots of interaction.   Output format can also 

have a large impact.  Lower amplitude differential outputs like LVDS tend to be the best.  If 

using differential output programmed to a CMOS format, it is best to have each side 

programmed to opposite polarity, even if only one side is used. Power supply decoupling can 

also have an impact.   Bypass capacitors for the output power supply pins can actually be 

hurtful as they can couple spur energy direct to the ground plane that shows up by other 

outputs.  If this is the case, isolating these power supplies by removing these capacitors or 

placing series ferrite beads tends to be very effective. 

 

Conclusion 

Direct spurs are those that occur at the output without causing double-sideband modulation.  

The spurs discussed in this chapter are measured directly at the frequency stated, as opposed 

to modulated spurs that are measured at an offset from the carrier, which is the next chapter.  
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Chapter 17      Modulated Spurs 

 

Introduction 

Modulated spurs are the result of a spur source directly modulating the VCO or the output.  

One of the telltale signs that distinguish them from direct spurs is that they occur in pairs at 

equal offset from the carrier of equal amplitude.     Many noise sources modulate the carrier 

frequency, and these spurs are measured at an offset from the carrier.  For instance, if one has 

a 900 MHz signal and spurs at ±1 MHz offset, the actual spur frequencies would be 899 and 

901 MHz.   The spurs that modulate the carrier will be discussed in greater depth in other 

chapters, but this chapter will give an overview of the most common types, with a focus on 

identifying these spurs by offset.   For some of these spurs, all the details are in this chapter, 

and for others, other chapters go into much greater depth.   

The first step in dealing with these spurs is to identify them by offset frequency and then do 

some verification to find the correct mechanism that causes them.  Once this is done, then one 

can do optimizations around the spur. 

 

Relationship between Frequency Modulation and Spurs 

Modulated spurs can be viewed as FM modulation on the VCO frequency.  The principles of 

sinusoidal modulation have been discussed, but this modulation is generally not a sine wave.  

However, it is fair to assume it is periodic on the interval 0 to L.  Under this assumption, the 

modulating waveform can be represented by a Fourier series which can be in either the form 

of sine and cosine functions or complex exponential functions. 

𝑚(𝑡) =  ∑ 𝑎𝑛 ∙ 𝑐𝑜𝑠 (
𝑛 ∙ 𝜋 ∙ 𝑡

𝐿
) + 𝑏𝑛 ∙ 𝑠𝑖𝑛 (

𝑛 ∙ 𝜋 ∙ 𝑡

𝐿
)

∞

𝑛=0

= ∑ 𝑐𝑛 ∙ exp (𝑗 ∙
𝑛 ∙ 𝜋 ∙ 𝑡

𝐿
)

∞

𝑛=−∞

 

(17.1)  

 

The Fourier coefficients can be calculated as follows: 

𝑎𝑛 = 
2

𝐿
∙ ∫ 𝑚(𝑡) ∙ 𝑐𝑜𝑠

𝐿

0

(
𝑛 ∙ 𝜋 ∙ 𝑡

𝐿
) ∙ dt (17.2)  

 

𝑏𝑛 = 
2

𝐿
∙ ∫ 𝑚(𝑡) ∙ 𝑠𝑖𝑛

𝐿

0

(
𝑛 ∙ 𝜋 ∙ 𝑡

𝐿
) ∙ dt (17.3)  

 

𝑐𝑛 = 
2

𝐿
∙ ∫ 𝑚(𝑡) ∙ 𝑒𝑥𝑝

𝐿

−𝐿

(𝑗 ∙
𝑛 ∙ 𝜋 ∙ 𝑡

𝐿
) ∙ dt (17.4)  
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From the Fourier series, the component for n=0 represents the carrier.   For the other spurs, 

we see that the lowest frequency spur occurs at an offset frequency that is equal to the repeat 

frequency of the modulating waveform, 1/L.   The offset frequency of the nth spur is given by:  

𝑓𝑆𝑝𝑢𝑟 = 
𝑛

𝐿
 (17.5)  

 

The amplitude of these spurs can be calculated from the Fourier coefficients as follows: 

 

𝑓𝑑𝑒𝑣 = ‖𝑐𝑛‖ =  √(𝑎𝑛)2 + (𝑏𝑛)2 (17.6)  

 

As the frequency deviation and modulation frequency are known, the modulation index of the 

spur can be calculated. 

𝛽 =  
𝑓𝑑𝑒𝑣
𝑓𝑆𝑝𝑢𝑟

 (17.7)  

 

It is a fair assumption to assume that the modulation is fairly small and therefore the Bessel 

function (J0) and spur level can be approximated as follows: 

 

𝑆𝑝𝑢𝑟 𝐿𝑒𝑣𝑒𝑙 = 20 ∙ 𝑙𝑜𝑔[𝐽0(𝛽)]  ≅ 20 ∙ log (
𝛽
2⁄ ) (17.8)  

 

To test the accuracy of this approximation, Figure 17.1  compares the true spur level to the 

approximated spur level.  In the case that the spur is less than −10 dBc, the approximation 

introduces less than a 0.1 dB error and if the spur was to be greater than −10 dBc, one probably 

has bigger issues to worry about than the accuracy of a theoretical model for the spur.  Based 

on this and the fact that it greatly simplifies the math going forward, it will be assumed that 

the Bessel function can be approximated with good accuracy.   
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Figure 17.1  Impact of Approximating the Bessel Function for Spur Level Calculations 
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−30 6.32 × 10-2 632 1900 3160 6320 12600 63200 

−40 2.00 × 10-2 200 600 1000 2000 4000 20000 

−50 6.32 × 10-3 63 190 316 632 1260 6320 

−55 3.56 × 10-3 36 107 178 356 712 3560 

−60 2.00 × 10-3 20 60 100 200 400 2000 

−65 1.12 × 10-3 11 34 56 112 224 1120 

−70 6.32 × 10-4 6 19 32 63 126 632 

−75 3.56 × 10-4 4 11 18 36 71 356 

−80 2.00 × 10-4 2 6 10 20 40 200 

−85 1.12 × 10-4 1 3 6 11 22 112 

−90 6.32 × 10-5 0.6 2 3 6 13 63 

Table 17.1 Relationship between Spur Level, Modulation Index, and Frequency Variation  

-10.0

-8.0

-6.0

-4.0

-2.0

0.0

2.0

4.0

6.0

8.0

10.0

-10.0 -5.0 0.0 5.0 10.0

C
o

rr
e

ct
e

d
 S

p
u

r 
(d

B
c)

Uncorrected Spur (dBc)



Modulated Spurs  

 

129 

 

Impact of Division on Spurs 

Many synthesizers have a divider after the VCO and it is good to understand the general 

principle that when one divides by D, the spur offset is unaffected, but the spur magnitude is 

theoretically decreased by 20∙log(D).   To demonstrate this principle, consider the following 

illustration: 

 

 

Figure 17.2  Example with Divide by 2 

 

The figure shows that dividing by two changes the frequency deviation, fDEV, but does not 

change the modulation frequency, fMOD.  Therefore, the spur amplitude is decreased by 6 dB 

and the spur offset is unchanged.   The real-world occurrence that might cause confusion is 

that when the divide by 2 is employed after a VCO, a spur at ½ the offset can be created.  

However, this spur is typically the result of coupling between the OSCin path and the VCO 

and not a result of the division. 

 

Impact of the Loop Filter on Spurs 

Inband and Outband Spur Mechanisms 

The possible impact that the loop bandwidth can have on spurs can be low pass, high pass, or 

all pass.  Inband mechanisms are those that go through the loop and are low pass filtered by 

it.  Outband mechanisms are high pass filtered and crosstalk directly to the VCO and follow 

the VCO transfer function.   Some spurs can be completely unaffected by the loop filter and 

these are all pass filtered.   
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Spur Gain and Rolloff 

Inband spur mechanisms are low pass filtered by the loop filter.  The Spur Gain is defined as 

the gain of the closed loop transfer function at spur frequency of interest.  

 

𝑆𝑝𝑢𝑟𝐺𝑎𝑖𝑛(𝑓𝑆𝑝𝑢𝑟)  =  20 ∙ 𝑙𝑜𝑔‖𝐶𝐿(2𝜋 ∙ 𝑗 ∙ 𝑓𝑆𝑝𝑢𝑟)‖ (17.9)  

 

In cases where the spur frequency of interest is far outside the loop bandwidth, the spur gain 

can be approximated using the open loop transfer function instead of the closed loop transfer 

function.  This greatly simplifies some of the mathematical analysis done later on. 

Assuming that the dominant spur mechanism is in band, the level of the spur is directly related 

to the spur gain.  In other words, if the spur gain decreases 1 dB, one would expect the spur at 

that frequency as well to decrease by 1 dB.  The derivation of this is given in the Appendix 

and the approximations used hold very well provided that the spur level that is predicted is –

10 dBc or lower.      

Rolloff is how much the loop filter rolls off the spur from inside the loop bandwidth and is 

given by:  

 

𝑅𝑜𝑙𝑙𝑜𝑓𝑓(𝑓𝑆𝑝𝑢𝑟)  =  𝑆𝑝𝑢𝑟𝐺𝑎𝑖𝑛(𝑓𝑆𝑝𝑢𝑟) −  20 ∙ 𝑙𝑜𝑔(𝑁) (17.10)  

 

VCOGain 

Outband spur mechanisms that crosstalk directly onto the VCO are filtered by the high pass 

VCO transfer function.  VCOGain is the value of the VCO transfer function at the spur 

frequency of interest. 

 

Identification of Modulated Spurs 

Introducing the Modulus Operator 

The modulus operator “%” is often used to denote remainder.  In reference to spurs, “A % B” 

can be thought of as the distance of A to the closest integer multiple of B.  Some examples 

would be 1503.7 % 100 = 3.7, 3999.7 % 100 = 0.3, and (9.7 MHz) % (2 MHz) = 300 kHz.   

 

Identification of Spur Type by Offset 

The process of identifying a spur first starts by determining the offset it is from the carrier.  

Then one goes through a list of potential spur types until one reaches a potential cause.   It is 

possible, and usually the case, that there could be multiple spur names for a potential spur and 

in this case, one could use any of the names.  If the dominant mechanism is known, then this 

is probably the best name for the spur. 



Modulated Spurs  

 

131 

 

 

fOSC

1/RxM
Phase 

Detector

N + Fnum/Fden 1/P

1/DfPD

fVCO

fOUT

 

Figure 17.3  PLL Diagram 

 

Common Modulated Spur Types 

 

Spur Type fVCO ± Offset 

fOSC fOSC 

fPD fPD 

fVCO% fOSC fVCO % fOSC 

Integer Boundary (fPD /Fden)∙(Fnum%Fden) 

Primary 

Fractional 
fPD/Fden 

Sub-Fractional 
fPD/Fden/k 

k=2,3,… 

Table 17.2  Common Types of VCO Modulated Spurs 

 

Table 17.2 gives a brief overview of some of the most modulated spur types.  Table 17.3 gives 

an example for identifying modulated spurs by their offset.  For the fractional spurs, the 

fraction is simplified, so the fraction used is 249/500, not 502/1000. 

 

Name ± Offset From Carrier Offset for This Example 

fOSC fOSC 50 MHz 

fPD fPD 75 MHz 

fVCO% fOSC fVCO% fOSC 24.7 MHz 

fVCO % fPD fVCO % fPD 300 kHz 

fOUT% fOSC fOUT% fOSC 7.53 MHz 

Integer Boundary fPD ∙(Fnum%Fden)/Fden 37.35 MHz 

Primary Fractional fPD /Fden 150 kHz 

Sub-Fractional fPD /Fden/k 75 kHz 

Table 17.3 Spur Type Identification Example 
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50 MHz

1/2x3
Phase 

Detector

40 + 502/1000 1/2

1/1075 MHz

6075.3 MHz

607.53 MHz

 

Figure 17.4  PLL Diagram 

 

Auxiliary PLL Cross Talk Spur 

Description  

This spur only occurs in dual PLLs and is seen at a frequency offset from the carrier equal to 

the difference of the frequencies of the main and auxiliary PLL (or sometimes a higher 

harmonic of the auxiliary PLL).  This spur is most likely to occur if the main and auxiliary 

sides of a dual PLL are close in frequency.   If the auxiliary PLL is powered down, but the 

auxiliary VCO is running, then this spur can dance around the spectrum as the auxiliary 

frequency VCO drifts around. 

 

Cause 

Parasitic capacitances on the board allow high frequency signals to travel from one PCB trace 

to another, especially for higher frequencies and longer traces.  There can also be cross talk 

within the chip.  The charge pump supply pins are vulnerable to high frequency noise. 

 

Diagnosis 

One of the best ways to diagnose this spur is to tune the auxiliary side of the PLL while 

observing the main side.  If the spur moves around, that is a good indication that the spur being 

observed is of this type.  Once this type of spur is diagnosed, then it needs to be determined if 

the spur is related to cross talk on the board, or cross talk in the PLL.  Most PLLs have a power 

down function that allows one to power down the auxiliary side of a PLL, while keeping the 

main side running.  If the auxiliary side of the PLL is powered down, and the spur reduces in 

size substantially, this indicates cross talk in the PLL chip.  If the spur stays about the same 

magnitude, then this indicates that there is cross talk in the board. 

 

Cure  

Aside from powering down the unused PLL, isolation of the power supply pins can also have 

an impact on this kind of spur.  
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Less Common Spur Types 

Greatest Common Multiple Spur 

This spur occurs in a dual PLL at the greatest common multiple of the two phase detector 

frequencies.  For example, if one side was running with a 25 kHz phase detector frequency, 

and the other side was running with a 30 kHz phase detector frequency, then this spur would 

appear at 5 kHz.   In some cases, this spur can be larger on certain output frequencies. 

The reason that this spur occurs is that the greatest common multiple of the two phase detector 

frequencies corresponds to the event that both charge pumps come on at the same time.   This 

result can be derived by considering the periods of the two comparison frequencies.  When 

both charge pumps come on at the same time, they produce noise at the charge pump supply 

pins, which gives birth to this spur. 

A couple telltale signs of this type of spur are it is always spaced the same distance from the 

carrier, regardless of output frequency.  However, keeping the output frequency the same, but 

changing the phase detector frequency causes this spur to move around.  Just be sure that when 

changing the comparison frequencies for diagnostic purposes, you are also changing the 

greatest common multiple of the two comparison frequencies. 

This spur can be treated effectively by putting more capacitors on the Vcc and charge pump 

supply lines.  Be sure that there is a good layout and decoupling around these pins.  Also 

consider changing the phase detector frequency of the auxiliary PLL.  

 

Prescaler Miscounting Spur 

This spur typically occurs at half the phase detector frequency.   On more rare occasions, it 

can be at one-third, two-thirds, or some fractional multiple of the phase detector frequency.   

It can have mysterious attributes, such only occurring on odd channels.  

This spur is caused by the prescaler miscounting.  Things that cause the prescaler to miscount 

include poor matching to the high frequency input pin, violation of sensitivity specifications 

for the PLL, and VCO harmonics.  Be very aware that although it may seem that the sensitivity 

requirement for the PLL is being met, poor matching can still agitate sensitivity problems and 

VCO harmonic problems.  Note also that there is an upper sensitivity limitation on the part. 

To understand why the prescaler miscounting causes spurs, consider fractional N averaging.   

Since the prescaler is skipping counts on some occasions and not skipping counts on another, 

it produces spurs similar to fractional spurs.  

Since miscounting ties in one way or another to sensitivity, try varying the voltage and/or 

temperature conditions for the PLL.  Since sensitivity is dependent on these parameters, any 

dependency to supply voltage or temperature point to prescaler miscounting as the cause of 

the spur.  Changing the N counter between even and odd values can also sometimes have an 

impact on this type of spur caused by the N counter miscounting and can be used as a 

diagnostic tool. 
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Also be aware that R counter sensitivity problems can cause this spur as well.  One way to 

diagnose the R counter miscounting is to change the R counter value just slightly.  If the spur 

seems sensitive to this, then this may be the cause.  If a signal generator is connected to the 

input reference, and the spur mysteriously disappears, then this suggests that the R counter 

miscounting is the cause of the spur. 

To cure this problem, it is necessary to fix whatever problem is causing the prescaler to 

miscount.  The first thing to check is that the power level is within the specifications of the 

part.  After that, consider the input impedance of the PLL.  For many PLLs, this tends to be 

capacitive.  Putting an inductor to match the imaginary part of the PLL input impedance at the 

operating frequency can usually fix impedance matching issues.  Also be aware of the 

sensitivity and matching to the VCO harmonics, since they can also cause a miscount.  Try to 

keep the VCO harmonics –20 dBm or lower in order to reduce the chance of the PLL 

miscounting the VCO harmonic. 

 

Prescaler Oscillation Spur 

This spur typically occurs far away from the carrier at an offset frequency of approximately 

the output frequency divided by the prescaler value.  In most applications, it is not a concern 

because it is out of band. 

 The prescaler oscillation spur is caused internally by the output frequency being divided by 

the prescaler.  It comes out through the high frequency input pin. 

This spur is sensitive to isolation between the VCO and the PLL.  The frequency offset is a 

good indicator that the spur may be due to prescaler oscillation.  Be sure to power down the 

PLL and make sure the spur goes away to verify it is not a cross talk issue. 

Providing greater isolation for the high frequency input pin of the PLL can be effective in 

reducing the prescaler oscillation spur.  The most basic way is to put a pad with sufficient 

attenuation.  The issue with this is that the attenuation of the pad may be limited by the 

sensitivity limits of the PLL.  Another approach is to put an amplifier, which increases 

isolation. Yet a third approach is to use a directional coupler, but this is frequency specific 

and costs layout area. 

 

Conclusion 

In this chapter, some of the types of modulated spurs have been discussed.  Modulated spurs 

are those that occur as sidebands of equal amplitude and offset from the carrier, as opposed to 

direct spurs that occur as just a single spur.   In some cases, there can be both direct and 

modulated spur mechanisms that contribute to the same spur.  In this case, it is possible to get 

unequal sidebands as could happen for the fVCO % fPD , fVCO % fOSC , or fOUT % fOSC spur. 
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Chapter 18      Modulated Crosstalk Spurs 

 

Introduction 

Crosstalk can be caused by many factors such as the board layout, but can also be internal to 

the PLL chip.   This can especially be a concern when the VCO is integrated on the chip.  In 

many cases, these spurs might even occur at the same offset and often coincide with the integer 

boundary spur.  These spurs can behave differently for different PLLs and situations and this 

is why it is good to try to isolate these spurs to understand them.  These spurs can be InBand 

and filtered by the loop filter, or OutBand, which are not filtered by the loop filter.  This 

chapter discusses the three main versions of the modulated crosstalk spur, which would be the 

fVCO%fPD spur, fVCO%fOSC spur, and the fOUT%fOSC spur. 

 

General Crosstalk Model 

The Board for Crosstalk Parasitic Capacitance and Crosstalk Model 

The following model is sometimes useful in visualizing how crosstalk can occur. 

CL

RL

VIN VOUT

CP

 

Figure 18.1  Basic Crosstalk Model 

 

For lower frequencies, the transfer function increases as 20 dB/decade and then approaches a 

final value for higher frequencies.  In general, this pattern might be seen with several of the 

crosstalk spurs discussed in this chapter. 
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Table 18.1 Frequency Transfer Function for Crosstalk Model 



   136         Modulated Crosstalk Spurs 

                              

Crosstalk Spur Summary 

The following table gives some of the more common crosstalk spurs, their suspected causes, 

and their common behaviors.  The mechanisms and trends stated are highly speculative and 

could vary between applications.  Use this table as a general guideline for trends to be watchful 

of.   

 

Spur 

Type 

InBand 

or 

OutBand 

Mechanism General (Not Always) Trends 

fOSC 
Always 

OutBand 

Stimulus:  OSCin 

 

Victim:  

VCO or Output 

• Degrades for higher fOSC 

• Degrades for higher pOSC 

• Impacted by VCO Core 

• Improves with VCO Divide 

fPD 
Always 

OutBand 

Stimulus:  R Divider 

 

Victim:  VCO or Output 

• Degrades with fPD 

• Impacted by VCO Core 

• Improves with VCO Divide 

fVCO%fPD 

InBand 

Stimulus:  

R Divider Mixing with N 

divider 

 

Victim: R Divider 

• Improves with fOSC 

• Improves  with pOSC 

• Improves with OSCin Slew 

Rate 

• Impacted by VCO Core 

• Improves with VCO Divide 

OutBand 

Stimulus:  

R Divider Mixing with N 

divider 

 

Victim: VCO  

• Degrades with fPD 

• Impacted by VCO Core 

• Improves with VCO Divide 

fVCO%fOSC 

InBand 

Stimulus:   OSCin Path 

 

Victim: VCO 

• Impacted by VCO Core 

• Improves with VCO Divide 

 

OutBand 

Stimulus: OSCin Path 

 

Victim:  VCO 

• Impacted by VCO Core 

• Improves with VCO Divide 

fOUT%fOSC 

InBand 

and 

OutBand 

Stimulus: OSCin Path 

 

Victim:  

Output Power Supply 

• Decrease with fOSC 

fOUT%fPD 
This spur is typically not a high as the other ones and dominated by other 

mechanisms 

Table 18.2 Common Crosstalk Spurs 
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Input Path Coupling Mechanisms 

OSCin Noise Coupling from the N Divider Input 

One mechanism for spurs to couple is for the high N divider input to generate noise that can 

couple to the VCO.  The noise generated by this pin can contain the phase detector frequency 

or MASH spur energy.  In the case of an external VCO, one way to mitigate this spur is to add 

more resistance between the N counter input pin, fIN, and the VCO output. 

18W18W

1
8

W

fVCO +/- fSPUR

f VC
O

fSPUR

fIN
PLL Chip

 

Table 18.3 Crosstalk Produced by the VCO input Path 

fOSC Spurs 

Description and Diagnosis 

These occur at an offset that is equal to fOSC or some multiple thereof. They can have the 

tendency to be worse for higher OSCin power levels, but better for OSCin slew rates.  It is 

best to make the OSCin frequency different than the phase detector frequency to better 

diagnose this spur. 

 

Cause and Mitigation 

These spurs are typically caused by the signal from the OSCin input mixing with the output 

frequency.  This mixing could be internal to the PLL chip or through the board.  Optimize the 

input format for the best spurs.  Often the best results are when the OSCin signal is low 

amplitude but high slew rate.  As slew rate is impacted by frequency, changing the input 

frequency can sometimes help as well.  The PCB board can have an impact on this spur, so 

isolation of supplies from OSCin may be useful.  Also, sometimes noise from the OSCin 

source can corrupt the ground plane, which can later corrupt the power and ground supplies 

of the PLL.  In summary, isolating the OSCin supply can sometimes help. 

 

fVCO % fOSC Spurs 

Description  

These spurs occur at an offset of fVCO % fOSC for synthesizers that integrate the VCO on chip.  

There should be caution with diagnosing with this spur is that there are several other spurs 

that can also occur at this offset, so some diagnosis is required.  There tend to be both in-band 

and out-band mechanisms for this spur and for synthesizers that integrate multiple VCO cores, 

it could be different for each core. 
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 Cause 

This spur is caused by crosstalk between the OSCin and VCO paths.   

 

Diagnosis   

The first step to diagnose this spur is to distinguish it from the fOUT%fOSC, fOUT%fPD, fVCO%fPD, 

and IBS spurs.  Depending on what multipliers and dividers are on the chip, this might not 

always be possible.  However, to whatever means is possible, shift fPD, fOSC, fOUT, and the PLL 

fraction to try to isolate this spur.   This spur can also be impacted by OSCin slew rate, power, 

and frequency.   If there is any way to better isolate the input path by doing something like 

enabling a doubler and dividing by two, then this can also help isolate this as the spur.  For 

devices with multiple programmable VCO cores, try to find a frequency at the boundary of 

two VCO cores that has this frequency and see if changing the VCO core, but keeping the 

same frequency has any impact. 

 

Cure 

Optimize the input format, frequency, and power for the best spurs.  Often the best results are 

when the OSCin signal is low amplitude but high slew rate.  Sometimes also for devices, this 

spur is better if you enable the input doubler and divide by two.    Although less common, 

isolation of the VCO power supply from any OSCin signals can help. 

 

fOUT % fOSC Spurs 

This spur has many similarities to the fVCO % fOSC spur, except the interaction is with the output 

instead of the VCO.  This spur can only be distinguished from the fVCO % fOSC spur in the case 

that there is a VCO divider that is not one (D ≠ 1). 

 

Description  

These spurs occur at an offset of fOUT % fOSC.  There should be caution with diagnosing with 

this spur is that there are several other spurs that can also occur at this offset, so some diagnosis 

is required.  Mathematically, this spur offset can be interpreted as a sub-multiple of the fVCO 

% fOSC spur if an output divider is used.  For instance, for an input frequency of 100 MHz, 

VCO frequency of 2002 MHz and output divide of 2, then this spur would be at 1 MHz output.  

Some incorrectly assume the 1 MHz offset it is the VCO spur offset (2 MHz) divided by 2, 

but it is actually because the output is 1001 MHz % 100 MHz = 1 MHz. 

 

Cause 

This spur is caused by crosstalk between the OSCin and output buffer.   
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Diagnosis   

The first step to diagnose this spur is to distinguish it from the fVCO%fOSC, fOUT%fPD, fVCO%fPD, 

and IBS spurs.  Depending on what multipliers and dividers are on the chip, this might not 

always be possible.  However, to whatever means is possible, shift fPD, fOSC, fVCO, and the PLL 

fraction to try to isolate this spur.   This spur can also be impacted by OSCin slew rate, power, 

and frequency.   If there is any way to better isolate the input path by doing something like 

enabling a doubler and dividing by two, then this can also help isolate this as the spur. 

 

Cure 

Optimize the input format, frequency, and power for the best spurs.  Often the best results are 

when the OSCin signal is low amplitude but high slew rate.  Sometimes also for devices, this 

spur is better if you enable the input doubler and divide by two.    Isolation of the supply to 

the output buffer can sometimes be helpful in improving this spur. 

 

fPD Spurs 

The phase detector spur has already been discussed.  As the phase detector frequency is always 

much higher than the loop bandwidth, there is only an out-band version of this crosstalk spur. 

 

fVCO % fPD Spurs 

Description  

These spurs occur at an offset of fVCO% fPD, especially in cases where the VCO is integrated 

on chip. There should be caution with diagnosing with this spur as there are several other spurs 

that can also occur at this offset, so some diagnosis is required.   This spur can change for 

different VCO cores for an integrated VCO.   For example, with a phase detector frequency 

and a VCO frequency of 5000.1 MHz, one would see these spurs at 5000 and 5000.2 MHz.  

If these were pure modulated spurs, theses should be both the same amplitude, but sometimes 

it can be the case that the spur at 5000 MHz would be higher amplitude because it is a direct 

harmonic of 100 MHz.  Other times, the spurs are exactly the same. 

 

Cause 

This spur is caused by crosstalk between the fPD and fVCO signals. 

 

Diagnosis   

Change the phase detector frequency to isolate this spur from the fVCO% fOSC  spur.  Sometimes 

also, if you see that raising the phase detector frequency increases this spur, then this is a 

giveaway that it is this spur. 
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Cure 

If the spur is on-chip, then sometimes reducing the phase detector frequency can help. This 

spur tends to be better for low amplitude, high slew rate OSCin signals.  If the phase detector 

or charge pump has any programmable settings, sometimes this can help.   Also better isolation 

of the charge pump supply pin can be helpful. 

 

fOUT % fPD Spurs 

For the sake of completeness, this spur is included in the descriptions, but the truth is that the 

mechanism of the phase detector frequency mixing with the output frequency is much less 

than other mechanisms that would cause a spur at this same offset.   

 

fVCO % fPD Spur 

This spur only occurs in fractional PLLs and will occur at the same offset as the integer 

boundary spur unless there is a pre-N divider in the loop.   

 

fPD

(from R Divider)

fPD + fSPUR

(from N Divider)

fVCO

(from VCO)

fVCO ± fSPUR

(at VCO Output)

 

Figure 18.2  Spur Coupling Mechanism or the fVCO % fPD Spur 

 

Conclusion 

One common, but often ignored mechanism for spurs is crosstalk.  This crosstalk is often 

between VCO and input, VCO and phase detector, or divided VCO frequency and input.  The 

spurs produced by these mechanisms are often at the same offset as one would expect from 

fractional spurs, so it is good practice to be systematic in determining where these spurs come 

from so that they can be better mitigated. 
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Chapter 19      Phase Detector Spurs and their Causes 

 

Introduction 

Phase detector spurs occur at an offset from the carrier equal to the phase detector frequency 

(fPD).  The three mechanisms that generally cause this spur are charge pump leakage, charge 

pump on time (pulse), and crosstalk.  Charge pump leakage occurs when the charge pump is 

intended to be off, but leakage introduces AC modulation on the VCO tuning line.  Pulse 

effects are referring to time that the charge pump comes on and this can be impacted by other 

factors, such as charge pump mismatch.   Crosstalk can come in many forms, but the one 

discussed in this chapter is that from the phase detector to the VCO that goes around the loop 

filter.  This chapter discusses these three mechanisms and gives some models for them.  

 

 

RES BW 10  kHz VBW 30  kHz SWP 45.0  msec 

ATTEN 10  dB REF -23.0  dBm  

1 0  dB/  

SAMPLE 

CENTER 2.04000  GHz SPAN 1 . 50  MHz 

MKR   203 kHz 
 -58.4  dB 

VID AVG 
 1 0 0 

MARKER  
 203 kHz 
 -58.4  dB 

 

Figure 19.1  Typical Phase Detector Spur Plot 

 

 

Understanding how Charge Pump Leakage Causes Spurs 

When the PLL is in the locked condition, the charge pump will generate short correction 

currents with long periods in between in which the charge pump is supposed to be high 

impedance (tri-state).    However, during the tri-state period there will be some parasitic 

leakage through the charge pump, VCO, and loop filter capacitors.  Of these leakage sources, 

the charge pump is often, but not always, the dominant one.  If the leakage is sufficiently 

large, it can cause the charge pump to only source current and can be modeled in the following 

figure.  Theoretically, the on time of the charge pump will be such that the total charge 

delivered is equal to the total charge lost through leakage when the charge pump is supposed 

to be high impedance. 
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Figure 19.2  Output of the Charge Pump in Locked Condition with High Leakage 

 

The leakage causes FM modulation on the VCO tuning line as shown in Figure 19.3 . 
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Figure 19.3  Modulation on VCO Tuning Line Caused by Leakage Currents 

 

This modulation results in spurs that are at an offset of fPD from the carrier and with an 

amplitude that is correlated to the magnitude of the leakage.     To predict the phase detector 

spur levels based on leakage, use the following general rule that works for both the 

fundamental spur and its higher harmonics: 

 

𝐿𝑒𝑎𝑘𝑎𝑔𝑒 𝑆𝑝𝑢𝑟 =  𝐵𝑎𝑠𝑒𝐿𝑒𝑎𝑘𝑎𝑔𝑒𝑆𝑝𝑢𝑟 +  20 ∙ 𝑙𝑜𝑔 |
𝐼𝐿𝑒𝑎𝑘𝑎𝑔𝑒

𝐾𝑃𝐷
| + SpurGain(f𝑃𝐷) (19.1)  

 

BaseLeakageSpur is calculated in the appendix and is given by: 

 
𝐵𝑎𝑠𝑒𝐿𝑒𝑎𝑘𝑎𝑔𝑒𝑆𝑝𝑢𝑟 ≈ 16.0 (19.2)  
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BaseLeakageSpur is a universal constant for any integer PLL and is not device specific.  It is 

not measured directly, but rather it can be extrapolated from measured data.  Appendix A goes 

in to greater detail as to how this model and constant were derived.  ILeakage is the leakage 

current when the charge pump is supposed to be high impedance.  This can be temperature 

dependent with a tendency to increase at higher temperatures and higher charge pump 

voltages, so spurs caused by leakage of the charge pump tend to increase when the PLL is 

heated.  To demonstrate this model for leakage induced spurs matches reality, various leakage 

currents were induced at different phase detector frequencies and the first three harmonics of 

the phase detector spur were measured.  This experiment was tried for three different loop 

filters.  Although the phase detector frequencies, VCO frequencies, and measured spurs vary 

considerably, the BaseLeakageSpur is fairly consistent. 

 

Ileak 

 

(nA) 

20∙ 

Log 

(Ileakage 

/KPD) 

(dB) 

fPD 

 

(kHz) 

Filter 

Spur Levels 

 

(dBc) 

Spur Gain 

 

(dB) 

Implied 

BaseLeakage 

Spur 

(dBc) 

1st 2nd 3rd 1st 2nd 3rd 1st 2nd 3rd 

200 −86.0 50 A −28.3 −40.5 −47.3 41.7 29.7 22.7 16.0 15.8 16.0 

100 −92.0 50 A −33.8 −45.7 −52.7 41.7 29.7 22.7 16.5 16.6 16.6 

100 −80.0 100 B −24.3 −40.5 −51.5 38.8 21.9 11.6 16.9 17.6 16.9 

100 −80.0 200 B −43.5 −61.5 −72.0 21.9 4.2 −6.3 14.6 14.3 14.3 

500 −46.0 400 C −32.7 X X −2.4 X X 15.7 X X 

200 −54.0 400 C −40.5 X X −2.4 X X 15.9 X X 

Average Base Leakage spur 15.9 16.1 16.0 

Filter 
KPD 

(mA) 

KVCO 

(MHz/V) 

C1 

(nF) 

C2 

(nF) 

C3 

(pF) 

R2 

(kW) 

R3 

(kW) 

Output Frequency 

(MHz) 

A 4.0 17 5.6 33 0 4.7 0 900 

B 1.0 43 0.47 3.3 90 12 39 1960 

C 0.1 48 1 4.7 0 18 0 870 

 

Figure 19.4  Spur Level vs. Leakage Currents and Phase detector frequency 

 

 

Impact of Capacitor Dielectric Absorption on the Phase Detector Spur 

A somewhat rare phenomenon can occur when observing the phase detector frequency if the 

phase detector frequency is low and capacitors with poor dielectric properties are used.  This 

phenomenon is characterized by a ghastly increase in the phase detector spurs right after 

switching frequencies.  After the frequency is changed, it takes an excessively long time for 

the phase detector spurs to settle down.  Assuming that it is not a measurement issue, such as 

using video averaging, this can be caused by an issue with capacitors called dielectric 

absorption, which causes capacitors to develop a residual charge, which can be modeled as 

excessive leakage.  If this is the case, try using NP0 or film capacitors and often it will make 

this problem go away. 
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Pulse Related Spurs 

In classical PLL literature, it is customary to model the phase detector spurs based entirely on 

leakage currents.  For older PLLs, where the leakage currents were in the mA range, this made 

reasonable estimates for phase detector spurs and their behavior.  However, modern PLLs 

typically have leakage currents in the range 1 nA, and therefore other factors tend to dominate 

the spurs, except at low phase detector frequencies.  

Recall that the charge pump comes on for very short periods of time and then is off during 

most of the time.  It is the length of time that these short charge pump corrections are made 

that determines the pulse related spur.  In other words, if leakage is not the dominant factor, 

then it is this time that the charge pump is on that determines the spur levels.  There are several 

factors that influence this correction pulse width which include dead-zone elimination 

circuitry, charge pump mismatches, and unequal transistor turn on times.   

The dead zone elimination circuitry forces the charge pump to turn on to keep the phase 

detector out of the dead zone.  It is this period that the charge pump is on that is the root cause 

of phase detector spurs when charge pump leakage is not a factor.  Note that even though 

leakage is not the cause of pulse related spurs, it can have a small influence on this pulse 

width. 

Mismatch and unequal turn on times of the charge pump transistors also have a large impact 

on this minimum turn on time for the charge pump.  When the charge pump source and sink 

currents are not equal, they are said to have mismatch.  For instance, if the source current were 

10% higher than the sink current, then a rough rule of thumb would be that the charge pump 

would have to come on 10% longer than its minimum on time when sinking current, producing 

an overall increase in spur levels.  The unequal turn on times of the sink and source transistors 

also can increase this charge pump on time.  In general, the source transistor is a PMOS device, 

which has twice the turn on time as the sink transistor, which is an NMOS device.  The net 

effect of this is that the effective source current is reduced, and this has a similar effect as 

having negative mismatch.   

For pulse related spur issues, it is important to be aware of the mismatch properties and to 

base the design around several different parts to get an idea of the full variations.   Mismatch 

properties of parts can vary from date code to date code, so it is important to consider that in 

the design process.  Also, in designs where an op-amp is used in the loop filter, it is best to 

center the op-amp around half of the charge pump supply voltage or slightly higher.  Due to 

this variation of spur level over tuning voltage to the VCO, the way that spurs are characterized 

in this chapter are by the worst-case spur when the VCO tuning voltage is varied from 0.5 

volts to 0.5 volts below the charge pump supply.    The variation can also be mentioned, since 

this shows how much the spur varies, but ultimately, the worst-case spur should be the figure 

of merit.  To predict the kth phase detector spur caused by the pulsing action of the charge 

pump, the following rule applies. 

 

𝑃𝑢𝑙𝑠𝑒 𝑆𝑝𝑢𝑟 =  𝐵𝑎𝑠𝑒𝑃𝑢𝑙𝑠𝑒𝑆𝑝𝑢𝑟 +  40 ∙ 𝑙𝑜𝑔 |
𝑓𝑆𝑝𝑢𝑟

1𝐻𝑧
| + SpurGain(𝑓𝑆𝑝𝑢𝑟) + 20 ∙ log (𝑘) (19.3)  
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The reader may be surprised to see that the above formula has the additional fSPUR term added.  

This was first discovered by making observations with a modulation domain analyzer, which 

displays frequency versus time.  In the case of the leakage-dominated spur, the VCO 

frequency was assumed to be modulated in a sinusoidal manner, which was confirmed with 

observations on the bench.  However, this was not the case for the pulse-dominated spur.  For 

these, frequency spikes occur at regular intervals of time corresponding to when the charge 

pump turns on.  The pulse-dominated spurs were measured, and their magnitude could be 

directly correlated to the magnitude of these frequency spikes.  This correlation was 

independent of the phase detector frequency.  Therefore, using the modulation index concept 

does not work for pulse dominated spurs and introduces an error equal to ( )Spurflog20  .  The 

pulse spur differs from the leakage spur not by this factor but by ( )Spurflog40  .  The additional 

factor of ( )Spurflog20   comes because it is more proper to model the charge pump noise as a 

train of pulse functions, not a sinusoidal function.  Recall that to recover the time domain 

response of a pulse function applied to a system, this is simply the inverse Laplace transform.  

In a similar way that the inverse Laplace transform of 1/s is just 1, and not involving any 

factors of 1/, likewise in this situation, a factor of 1/ is lost for this reason, thus accounting 

for the additional factor of ( )Spurflog40  . 

 

fVCO 

 

MHz 

N 

fPD 

 

kHz 

KPD 

 

mA 

KVCO 

 

MHz/V 

C1 

 

nF 

C2 

 

nF 

C3 

 

pF 

R2 

 

kW 

R3 

 

kW 

Spur 

 

dBc 

Spur 

Gain 

dB 

BasePulse 

Spur 

dBc 

This data was all taken from an LMX2330 PLL.  The VCO was near the high end of the rail. 

1895 18950 100 4 43.2 2.2 10 0 6.8 0 −51.7 46 −297.7 

1895 18950 100 4 43.2 13.9 66 0 2.7 0 −69.7 30 −299.7 

1895 18950 100 4 43.2 0.56 2.7 0 15 0 −41.0 58 −299.0 

1895 18950 100 4 43.2 1.5 6.8 0 5.6 0 −50.0 49.2 −299.2 

1895 18950 100 4 43.2 1.5 6.8 100 5.6 39 −59.8 40.5 −300.3 

1895 6064 312.5 4 43.2 4.7 20 0 1.8 0 −60.2 19.6 −299.6 

1895 6064 312.5 4 43.2 1.8 5.6 0 1.5 0 −51.1 27.7 −298.6 

This data was taken from an LMX2326 PLL with Vtune = 0.29 V and Vcc = 3 V 

231 1155 200 1 12 0.47 3.3 0 12 0 −74.1 23.0 −309.1 

881.6 4408 200 1 18 0.47 3.3 0 12 0 −70.1 27.6 −309.7 

881.6 1146 770 1 18 0.47 3.3 0 12 0 −70.1 4.9 −308.8 

1885 9425 200 1 50 0.47 3.3 0 12 0 −59.7 35.6 −308.6 

1885 4343 434 1 12 0.47 3.3 0 12 0 −58.7 22.2 −307.7 

Table 19.1 Demonstration of the Consistency of the BasePulseSpur  

 

The first seven rows in Table 19.1 demonstrate the consistency of BasePulseSpur over 

different loop filters and phase detector frequencies.  The last five rows show consistency for 

many different VCO and phase detector frequencies.  The tuning voltage was kept to maintain 

consistent mismatch properties of the charge pump and to also make spurs that were easy to 

measure.  Although this table demonstrates the consistency of BasePulseSpur, the actual value 

for this is worse than typical as the tuning voltage was forced near the supply rail to emphasize 

this spur mechanism.  



   146         Phase Detector Spurs and their Causes 

                              

As for the consistency of BasePulseSpur with harmonics of pulse dominated spurs, a 

LMX2326 PLL was tuned in 1 MHz increments from 1900 MHz to 1994 MHz using an 

automated test program.  For these tests, KPD= 1 mA, fPD= 200 kHz, and  KVCO = 45 MHz/V.  

Filter A had components of C1 = 145 pF, C2 = 680 pF, R2 = 33 kW, while Filter B had 

components of C1 = 315 pF, C2 = 1.8 nF, and R2 = 18 kW    

 

 
Fundamental 

(200 kHz) 

2nd Harmonic 

(400 kHz) 

3rd Harmonic 

(600 kHz) 
Minimum (dBc) −56.2 −65.1 −64.5 

Average (dBc) −52.8 −58.5 −61.9 

Maximum (dBc) −49.3 −54.4 −59.0 

Spur Gain for Spur (dB) 45.7 33.8 26.8 

20∙log(k) 0 6 9.5 

BasePulseSpur (dBc) −307.0 −306.4 −307.4 

Table 19.2 Phase Detector Spurs and their Harmonics for Filter A 

 

 

 
Fundamental 

(200 kHz) 

2nd Harmonic 

(400 kHz) 

3rd Harmonic 

(600 kHz) 
Minimum (dBc) −64.8 −70.4 −69.1 

Average (dBc) −60.8 −65.1 −66.8 

Maximum (dBc) −56.2 −61.1 −64.7 

Spur Gain for Spur (dB) 39.0 27.1 20.0 

20∙log(k) 0 6 9.5 

BasePulseSpur (dBc) −307.2 −306.2 −306.3 

Table 19.3  Phase Detector Spurs and their Harmonics for Filter B 

 

  

 

BasePulseSpur for Various PLLs 

 

PLL BasePulseSpur (dBc) 

LMX2301/05, LMX2315/20/25 −299 

LMX2330/31/32/35/36/37 −311 

LMX2306/16/26 −309 

LMX1600/01/02 −292 

LMX2470/71, LMX2430/33/34, 

LMX2485/86/87 
−331 

LMX2581,LMX2571, LMX2492 −343 

Table 19.4 BasePulseSpur for Various Texas Instruments PLLs 
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Impact of Mismatch on BasePulseSpur 

The avid reader may inquire about the impact of charge pump mismatch on BasePulseSpur.  

This can be device specific and related to the turn on times of the transistors in the charge 

pump.  However, one interesting fact is that the unequal turn on times of the transistors may 

cause it such that ideal mismatch is greater than 0%.   To illustrate this, the LMX2315 PLL 

was used, and the spur level was measured along with the charge pump mismatch.  The spur 

gain of this system was 19.6 dB, and in this system the phase detector frequency was 200 kHz, 

so the spurs are clearly pulse-dominated.  Note that the turn-on time of the charge pump 

transistors also comes into play, so this result is specific to the LMX2315 family of PLLs.  For 

this PLL, it seems that the optimal spur levels occur around +4% mismatch instead of 0% 

mismatch due to these unequal transistor turn on times.   

 

Vtune (Volts) 1 1.5 2.2 3 4 4.5 
Source (mA) 5.099 5.169 5.241 5.308 5.397 5.455 

Sink (mA) 5.308 5.253 5.166 5.047 4.828 4.517 

mismatch (%) −4.0 −1.6 1.4 5.0 11.1 18.8 

200 kHz Spur (dBc) −73.1 −76.6 −83.3 −83.2 −72.8 −65.7 

Table 19.5 Sample Variation of Spur Levels and Mismatch with Charge Pump Voltage 

 

Using statistical models, this suggests that the best spur performance is actually when the 

charge pump is 3.2% mismatched and also gives the relationship for this device as: 

 

𝐵𝑎𝑠𝑒𝑃𝑢𝑙𝑠𝑒𝑆𝑝𝑢𝑟𝐿𝑀𝑋2315  =  −315.6 +  1.28 ∙ |%𝑚𝑖𝑠𝑚𝑎𝑡𝑐ℎ − 3.2%| (19.4)  

 

Combining the Concepts of Leakage Related Spurs and Pulse Related Spurs 

Critical Values for Phase Detector Frequency 

At lower phase detector frequencies, the leakage spur dominates over the pulse spur, but 

eventually it is the other way around.  It may be of interest to some to know the phase detector 

frequency where these are both equal.   By calculating the spurs with both methods and setting 

this equal, this critical phase detector frequency can be found to satisfy the following equation.   

 

40 ∙ 𝑙𝑜𝑔 (
𝑓𝑃𝐷
1 𝐻𝑧

)  =  (𝐵𝑎𝑠𝑒𝐿𝑒𝑎𝑘𝑎𝑔𝑒𝑆𝑝𝑢𝑟 − 𝐵𝑎𝑠𝑒𝑃𝑢𝑙𝑠𝑒𝑆𝑝𝑢𝑟) +  20 ∙ 𝑙𝑜𝑔 |
𝐼𝐿𝑒𝑎𝑘𝑎𝑔𝑒

𝐾𝑃𝐷
| (19.5)  

 

Assuming a charge pump gain of 1 mA and a BaseLeakageSpur of 16.0 dBc the following 

table can be calculated.  Note that the critical frequency is proportional to the square root of 

the leakage current, and inversely proportional to the square root of the charge pump gain.  
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  BasePulseSpur (dBc) 

  −290 −300 −310 −320 −330 −340 −350 
I L

ea
k

a
g

e
 (

n
A

) 0.1 14.1 25.1 44.7 79.4 141.3 251.2 446.7 

1.0 44.7 79.4 141.3 251.2 446.7 794.3 1412.5 

10.0 141.3 251.2 446.7 794.3 1412.5 2511.9 4466.8 

100.0 446.7 794.3 1412.5 2511.9 4466.8 7943.3 14125.4 

1000.0 1412.5 2511.9 4466.8 7943.3 14125.4 25118.9 44668.4 

Table 19.6 Critical Values for Phase Detector Frequency in Kilohertz 

 

Spur Levels vs. Unoptimized Loop Filter Parameters 

Table 19.7 showing how various parameters impact leakage and pulse dominated spurs. 

 

Parameter Description 
Leakage Dominated 

Spurs 
Pulse Dominated Spurs 

ILeakage Charge Pump Leakage 20 ∙ 𝑙𝑜𝑔|𝐼𝐿𝑒𝑎𝑘𝑎𝑔𝑒| N/A 

mismatch Charge Pump Mismatch N/A 
Correlated to 

 | mismatch - Constant | 

N N Counter Value  independent independent 

KVCO VCO Gain  20 ∙ 𝑙𝑜𝑔(𝐾𝑉𝐶𝑂) 20 ∙ 𝑙𝑜𝑔(𝐾𝑉𝐶𝑂) 
fPD Phase Detector Frequency −40 ∙ 𝑙𝑜𝑔(𝑓𝑃𝐷) −20 ∙ 𝑙𝑜𝑔(𝑓𝑃𝐷) 
r r = fPD /BW −40 ∙ 𝑙𝑜𝑔(𝑟) −40 ∙ 𝑙𝑜𝑔(𝑟) + 20 ∙ 𝑙𝑜𝑔(𝑓𝑃𝐷) 

KPD Charge Pump Gain,  independent 20 ∙ 𝑙𝑜𝑔(𝐾𝑃𝐷) 
SG Spur Gain SG SG 

Table 19.7 Spur Levels vs. Parameters if Loop Filter is NOT Redesigned  

 

fPD Crosstalk Spurs 

Modeling of the fPD Crosstalk Spur 

Aside from being caused by leakage currents and the pulsed on time of the charge pump, phase 

detector spurs can also be the result of crosstalk to the VCO.    This crosstalk can be the result 

of spur energy coupling to the power supply of the VCO or from the high frequency input of 

the PLL to the VCO output.  The phase detector frequency is much higher than the loop 

bandwidth, so loop filter impact is negligible.  This spur is typically fairly constant, but  can 

change somewhat with the phase detector frequency.   For instance, board bypassing may 

attenuate this spur energy for higher phase detector frequencies.  However, crosstalk can often 

be more severe at higher frequencies.  This makes theoretical sense if one thinks of parallel 

traces as having a parasitic capacitance between them and therefore the impedance would be 

less at higher frequencies.   The crosstalk can have an increasing tendency with phase detector 

frequency for a while, and then decrease at even higher phase detector frequencies.  In any 

case, this is part specific. In addition to this, the crosstalk spur can be impacted by the OSCin 

slew rate as well as other real-world effects. 
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fPD Crosstalk Spurs with Devices with Integrated VCOs 

When VCO is integrated with the PLL, there can be crosstalk on-chip.  Often this will be 

lower for smaller phase detector frequencies and increase 6 dB/decade with the phase detector 

frequency to some point and then stabilize, or then even start to go down.  These spurs can be 

impacted by the layout and power supply decoupling so modeling of them tends to be part-

specific and complicated. 

 

fPD Crosstalk Spurs with Devices with External VCOs 

These spurs can also occur when the VCO is not integrated with the PLL.  This can happen 

when the charge pump supply pin pollutes the power supply or ground plane and this gets to 

the VCO, or it can be the result of spur energy going to the PLL high frequency input pin and 

then leaking back to the VCO.   In this case that it is coming from the charge pump supply, 

reducing the charge pump current can often help this spur.   This also reduces the loop 

bandwidth, which will reduce the fPD spur due to leakage and pulsed charge pump output.  For 

this reason, one should be careful not to get the crosstalk spur mechanism confused with these 

other mechanisms when changing the charge pump current.   In the case that the spur is leaking 

through the high frequency input pin, more isolation such as buffering or resistive pads can 

sometimes improve this spur.    

 

Conclusion 

This chapter has discussed the causes of phase detector spurs and given some techniques to 

simulate their general behavior.  Phase Detector spurs can be caused by leakage,  pulse, or 

crosstalk effects.  The total phase detector spur is therefore the sum of the spur from all three 

of these effects.  In other words: 

 

𝑃ℎ𝑎𝑠𝑒𝐷𝑒𝑡𝑒𝑐𝑡𝑜𝑟𝑆𝑝𝑢𝑟 

=  10 ∙ 𝑙𝑜𝑔[10(𝐿𝑒𝑎𝑘𝑎𝑔𝑒𝑆𝑝𝑢𝑟/10) + 10(𝑃𝑢𝑙𝑠𝑒𝑆𝑝𝑢𝑟/10) + 10(𝐶𝑟𝑜𝑠𝑠𝑡𝑎𝑙𝑘𝑆𝑝𝑢𝑟/10)] 
(19.6)  

 

As for the accuracy of the formulas presented in this chapter, there will always be some 

variation between the actual measured result and the theoretical results.  Relative comparisons 

using spur gain tend to be the most accurate.    It is recommended to use the empirical value, 

but to accept that there could be several dB variation between the predicted and measured 

results.  In the case of pulse-dominated spurs, the value for BasePulseSpur is purely empirical 

and is based solely on measured data.  These spurs can also change a good 15 dB as the VCO 

is tuned across its tuning range.  The spur metrics presented in this chapter are for the worst-

case tuning voltage.  As for modeling of the phase detector spur due to crosstalk, this has 

much less to do with PLL theory and more with just having empirical measurements. 
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Appendix A:  Theoretical Calculation of Leakage Based Spurs 

The charge pump comes on for a very short period of time to charge the loop filter, and then 

the leakage occurs over a long period.  For practical purposes of modeling this spur, this on 

time can be assumed to be instantaneous and the FM modulation produced by the leakage can 

be modeled as a sawtooth waveform as shown. 
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Figure 19.5  VCO Frequency Output 

 

The spurs can be modeled by writing a Fourier series for this sawtooth wave. 

 

𝑓(𝑡) =  𝑓𝑉𝐶𝑂 + ∆f ∙∑
𝑠𝑖𝑛[2𝜋 ∙ 𝑓𝑃𝐷 ∙ 𝑘 ∙ 𝑡]

𝑘 ∙ 𝜋

∞

𝑛=1

=  𝑓𝑀𝑖𝑛 + ∑𝑓𝐷𝐸𝑉(𝑘) ∙ 𝑠𝑖𝑛[2𝜋 ∙ 𝑓𝑀𝑂𝐷(𝑘) ∙ 𝑡]

∞

𝑛=1

 (19.7)  

 

The next task is to figure out the frequency deviation, fDEV, and modulation index, fMOD.  The 

modulation frequency for the nth phase detector spur is given by:  

 

𝑓𝑀𝑂𝐷(𝑘) =  𝑘 ∙ 𝑓𝑃𝐷 (19.8)  

 

To find the frequency deviation, fDEV(k), some calculations are needed.  Since the 

BaseLeakageSpur is theoretically independent of PLL and loop filter, it makes sense to choose 

the loop filter that is the most basic.  A simple capacitor is the most basic loop filter.  Although 

this filter topology is not stable, it is sufficient for the purposes of calculations.  Using this 

simplified loop filter, the voltage deviation to the VCO can easily be calculated.  Substituting 

in known values gives the voltage deviation over one phase detector cycle: 

∆𝑉 =  ∫    
𝑙𝑒𝑎𝑘𝑎𝑔𝑒

𝐶1

1
𝑓𝑃𝐷
⁄

0

∙ 𝑑𝑡 =  
𝑙𝑒𝑎𝑘𝑎𝑔𝑒

𝐶1 ∙ 𝑓𝑃𝐷
 (19.9)  
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The frequency deviation can be found by taking the Fourier series coefficient and multiplying 

it by the deviation from center frequency, which is half of the total frequency deviation. 

 

𝑓𝐷𝐸𝑉(𝑘) =   
∆𝑓

2 ∙ 𝑘 ∙ 𝜋
=  

𝐾𝑉𝐶𝑂
2 ∙ 𝑘 ∙ 𝜋

∙ ∫    
𝑙𝑒𝑎𝑘𝑎𝑔𝑒

𝐶1
∙ 𝑑𝑡 =  

𝐾𝑉𝐶𝑂 ∙ 𝑙𝑒𝑎𝑘𝑎𝑔𝑒

2 ∙ 𝑘 ∙ 𝐶1 ∙ 𝑓𝑃𝐷

1
𝑓𝑃𝐷
⁄

0

 (19.10)  

 

The modulation index for the kth term in the Fourier series can now be calculated as follows. 

 

𝛽(𝑘) =   
𝑓𝐷𝐸𝑉(𝑘)

𝑓𝑀𝑂𝐷(𝑘)
=  

𝐾𝑉𝐶𝑂 ∙ 𝑙𝑒𝑎𝑘𝑎𝑔𝑒

2 ∙ 𝐶1 ∙ 𝑘2 ∙ 𝑓𝑃𝐷
2 (19.11)  

The kth leakage spur can now be calculated from the modulation index.   

 

𝐿𝑒𝑎𝑘𝑎𝑔𝑒𝑆𝑝𝑢𝑟 = 20 ∙ 𝑙𝑜𝑔 (
𝛽(𝑘)

2
) =    20 ∙ 𝑙𝑜𝑔 (

𝐾𝑉𝐶𝑂 ∙ 𝑙𝑒𝑎𝑘𝑎𝑔𝑒

2 ∙ 𝐶1 ∙ 𝑘2 ∙ 𝑓𝑃𝐷
2) (19.12)  

 

Now that the leakage spur is known for this specific case, we next need to calculate the spur 

gain.  For this, we assume the spur is far outside the loop bandwidth.  This implies that the 

spur gain can be approximated with the open loop gain. 

 

𝑆𝑝𝑢𝑟𝐺𝑎𝑖𝑛 ≈    20 ∙ 𝑙𝑜𝑔‖𝐺(2𝜋 ∙ 𝑗 ∙ 𝑓𝑃𝐷 ∙ 𝑘)‖ = 20 ∙ 𝑙𝑜𝑔 |
𝐾𝑃𝐷∙𝐾𝑉𝐶𝑂

4𝜋2∙𝑓𝑃𝐷
2∙𝑘2∙𝐶1

|  (19.13)  

 

The next step is to calculate the BaseLeakageSpur by subtracting (19.13) from (19.12). 

 

𝐵𝑎𝑠𝑒𝐿𝑒𝑎𝑘𝑎𝑔𝑒𝑆𝑝𝑢𝑟 = 𝐿𝑒𝑎𝑘𝑎𝑔𝑒𝑆𝑝𝑢𝑟 − 𝑆𝑝𝑢𝑟𝐺𝑎𝑖𝑛 − 20 ∙ 𝑙𝑜𝑔 |
𝑙𝑒𝑎𝑘𝑎𝑔𝑒

𝐾𝑃𝐷
|  

=     20 ∙ 𝑙𝑜𝑔 (
𝐾𝑉𝐶𝑂 ∙ 𝑙𝑒𝑎𝑘𝑎𝑔𝑒

2 ∙ 𝐶1 ∙ 𝑘2 ∙ 𝜋 ∙ 𝑓𝑃𝐷
2 ∙
4 ∙ 𝜋2 ∙ 𝑓𝑃𝐷

2 ∙ 𝑘2 ∙ 𝐶1

𝐾𝑃𝐷 ∙ 𝐾𝑉𝐶𝑂
∙

𝐾𝑃𝐷
𝑙𝑒𝑎𝑘𝑎𝑔𝑒

) 

 

=     20 ∙ 𝑙𝑜𝑔(2𝜋)    ≈ 16.0 

 

(19.14)  
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Appendix B:    Derivation for BasePulseSpur 

To calculate this index, first start with the filter that is easiest to model that has the key 

necessary properties as shown below.   

KPD  

R2

C2

Kvco

 s 

C1

 

Figure 19.6  Filter for BasePulseSpur Calculation 

 

For the purposes of calculating the BasePulseSpur, the steady state tuning voltage can be 

defined to be zero volts without any loss of generality.  Although the pulses may have a 

different alternating pattern, the tuning voltage as presented to the VCO would look something 

like as follows: 

t

1/fPD

V

 

Figure 19.7  VCO Tuning Voltage, V(t), Modeling of the BasePulseSpur 

 

To estimate V and t, consider the charge pump starting at high impedance and the step 

response current of amplitude KPD.  This step response can be calculated and expressed in 

terms of filter time constants T1 and T2 as follows: 

 

𝑉(𝑡) =
𝐾𝑃𝐷

𝐶1 + 𝐶2
∙ [𝑡 + (𝑇2 − 𝑇1) ∙ (1 − 𝑒−𝑡/𝑇1)] (19.15)  

 

Recall the following Taylor series expansion. 

 

𝑒𝑥 = 1 + x +⋯  (19.16)  
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If it is assumed that the time period is small, then (19.15) can be approximated as follows: 

 

𝑉(𝑡)  ≈  
𝐾𝑃𝐷 ∙ 𝑇2

(𝐶1 + 𝐶2) ∙ 𝑇1
∙ 𝑡 (19.17)  

 

Assuming the pattern to be repeating, the coefficients in the complex Fourier series for the 

kth harmonic are as follows: 

 

𝑐𝑘 =
1

1
𝑓𝑃𝐷
⁄

∙ ∫ 𝐾𝑉𝐶𝑂 ∙ 𝑉(𝑡) ∙ 𝑒
𝑗∙𝑘∙𝑓𝑃𝐷∙𝑡

∆𝑡

0

 (19.18)  

 

Use the first term of the Taylor series expansion.  

 

𝑒𝑥 = 1 + x +⋯ ≈ 1 (19.19)  

 

This simplifies to the following. 

 

𝑐𝑘 = 𝑓𝑃𝐷 ∙ ∫ 𝐾𝑉𝐶𝑂 ∙ [
𝐾𝑃𝐷 ∙ 𝑇2

(𝐶1 + 𝐶2) ∙ 𝑇1
∙ 𝑡] ∙ (1) ≈

𝑓𝑃𝐷 ∙ 𝐾𝑃𝐷 ∙ 𝐾𝑉𝐶𝑂 ∙ 𝑇2 ∙ ∆𝑡
2

2 ∙ (𝐶1 + 𝐶2) ∙ 𝑇1

∆𝑡

0

 (19.20)  

 

The modulation index as defined as the frequency deviation divided by the modulation 

frequency. 

𝛽(𝑘) =
𝑐𝑘

𝑘 ∙ 𝑓𝑃𝐷
= 

𝐾𝑃𝐷 ∙ 𝐾𝑉𝐶𝑂 ∙ 𝑇2 ∙ ∆𝑡
2

2 ∙ 𝑘 ∙ (𝐶1 + 𝐶2) ∙ 𝑇1
 (19.21)  

 

Now calculate the gain of the loop at the frequency of interest. 

 

𝑆𝑝𝑢𝑟𝐺𝑎𝑖𝑛(𝑘 ∙ 𝑓𝑃𝐷) ≈  20 ∙ 𝑙𝑜𝑔‖𝐺(2𝜋 ∙ 𝑗 ∙ 𝑓𝑃𝐷 ∙ 𝑘)‖ 

= 20 ∙ 𝑙𝑜𝑔 |
𝐾𝑃𝐷 ∙ 𝐾𝑉𝐶𝑂 ∙ (1 + 2𝜋 ∙ 𝑘 ∙ 𝑓𝑃𝐷 ∙ 𝑇2)

4 ∙ 𝜋2 ∙ 𝑘2 ∙ 𝑓𝑃𝐷
2 ∙ (𝐶1 + 𝐶2) ∙ (1 + 2𝜋 ∙ 𝑘 ∙ 𝑓𝑃𝐷 ∙ 𝑇1)

|

≈ 20 ∙ 𝑙𝑜𝑔 |
𝐾𝑃𝐷 ∙ 𝐾𝑉𝐶𝑂 ∙ 𝑇2

4 ∙ 𝜋2 ∙ 𝑘2 ∙ 𝑓𝑃𝐷
2 ∙ (𝐶1 + 𝐶2) ∙ 𝑇1

|  

  

(19.22)  
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To justify the last approximation, the phase detector frequency would have to be much farther 

out than 1/T2 for stability and can be assumed without loss of generality to be much larger 

than 1/T1.    

 

Now that both the spur gain and spur are known, subtract away the spur gain to derive the 

index for BasePulseSpur.   

 

𝐵𝑎𝑠𝑒𝑃𝑢𝑙𝑠𝑒𝑆𝑝𝑢𝑟 = 20 ∙ 𝑙𝑜𝑔 (
𝛽(𝑘)

2
) − SpurGain(𝑓𝑃𝐷 ∙ 𝑘) 

= 20 ∙ log (
𝐾𝑃𝐷 ∙ 𝐾𝑉𝐶𝑂 ∙ 𝑇2 ∙ ∆𝑡

2

2 ∙ 2 ∙ 𝑘 ∙ (𝐶1 + 𝐶2) ∙ 𝑇1
) −  20

∙ log (
𝐾𝑃𝐷 ∙ 𝐾𝑉𝐶𝑂 ∙ 𝑇2

4 ∙ 𝜋2 ∙ 𝑘2 ∙ 𝑓𝑃𝐷
2 ∙ (𝐶1 + 𝐶2) ∙ 𝑇1

) 

=  20 ∙ log (
𝐾𝑃𝐷 ∙ 𝐾𝑉𝐶𝑂 ∙ 𝑇2 ∙ ∆𝑡

2

2 ∙ 2 ∙ 𝑘 ∙ (𝐶1 + 𝐶2) ∙ 𝑇1
∙
4 ∙ 𝜋2 ∙ 𝑘2 ∙ 𝑓𝑃𝐷

2 ∙ (𝐶1 + 𝐶2) ∙ 𝑇1

𝐾𝑃𝐷 ∙ 𝐾𝑉𝐶𝑂 ∙ 𝑇2
) 

= 20 ∙ log(𝜋2 ∙ ∆𝑡2 ∙ 𝑘 ∙ 𝑓𝑃𝐷
2)  

 

(19.23)  

This can be simplified to the following rule. 

 

𝐵𝑎𝑠𝑒𝑃𝑢𝑙𝑠𝑒𝑆𝑝𝑢𝑟(𝑘) = 40 ∙ log(𝜋 ∙ ∆𝑡) −  40 ∙ log(𝑓𝑃𝐷) −  20 ∙ log(𝑘)  (19.24)  

 

This not only demonstrates the concept for BasePulseSpur, but also shows that it implies a 

charge pump pulse width.  For the first harmonic of the phase detector frequency (k=1), here 

is a table of some commonly measured values for BasePulseSpur and the implied Pulse width. 

 

PLL BasePulseSpur (dBc) Implied Pulse Width (ns) 

LMX2301/05, LMX2315/20/25 −299 10.7 

LMX2330/31/32/35/36/37 −311 5.3 

LMX2306/16/26 −309 6.0 

LMX1600/01/02 −292 16.0 

LMX2470/71, LMX2430/33/34, 

LMX2485/86/87 
−331 1.7 

LMX2581,LMX2571, LMX2492 −343 0.8 

Table 19.8 BasePulseSpur and Implied Pulse Width 
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Appendix C:  Impact of Discrete Sampling Effects on Spurs 

In situations where the loop bandwidth is wide relative to the phase detector frequency, it is 

possible for a cusping effect near the phase detector spurs.  In this case, the continuous time 

approximation gets stretched and some of the discrete sampling effects of the phase detector 

can be seen in the frequency domain.  Near the phase detector frequency, which is the 

sampling frequency, there will be a “cusping” effect on the spurs as shown in the following 

figure. 

 

 

 

 

Figure 19.8  Discrete Sampling Effects causing Cusping of Phase Detector Spur 
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Chapter 20      Fundamentals of Fractional Spurs 

 

Introduction 

Perhaps one of the greatest fears of using fractional PLLs is the fractional spurs.   

Understanding of these spurs can be complicated as they can be impacted by the loop filter, 

PLL fraction, modulator order, dithering, initial modulator state, phase detector frequency, 

OSCin power level/format, VCO Core, and potentially many other factors.   Trying to tackle 

all of these factors simultaneously leads to a garbled misunderstanding of fractional spurs that 

overlooks the fundamental patterns.  To break through this complexity, the first step is to 

begin with the simplest case of the first order modulator to understand the fundamental rules 

and leave the more complicated delta sigma modulators to a later chapter.  This chapter begins 

by establishing some fundamental properties of the first order modulator in order to create a 

foundation for understanding fractional spurs. 

 

The Fundamental Properties of the First Order Fractional Modulator 

Introduction 

The fractional PLL has a fraction expressed in the form Fnum/Fden as shown in the following 

figure: 

Fden

Fnum

Phase 

Detector

fOSC

fVCO

Loop 

Filter

N +

 

Figure 20.1  Fractional PLL 

 

For the first order modulator, there are some fundamental properties that generally hold true 

that will be discussed throughout the chapter. 

• Equivalent Fractions 

• Symmetric Fractions 

• Initial State Independence 

• Fractional Spur Offsets 

• Integer Boundary Spurs 

• Phase Detector Nulls 

 

The first four will be discussed immediately and then the last two will be discussed after it is 

shown how to calculate fractional spurs. 
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Equivalent Fraction Property for the First Order Modulator 

The equivalent fraction property says that if two fractions are equivalent, then they 

theoretically have the same spurs.  For instance, 1/4, 10/40, and 1000000/4000000 all should 

have the same spurs. This also means that the fraction of Fnum/Fden can assumed to be a 

lowest terms fraction without loss of generality.    

  

Symmetric Fraction Property for the First Order Modulator 

The symmetric fraction property states that Fnum/Fden and (Fden−Fnum)/Fden  theoretically 

have the same spurs.  For example, 3/100 and 97/100 theoretically have the same spurs.    

 

Initial State Independence Property for the First Order Modulator 

The initial state property states that the initial state of the accumulator, also called the seed, 

has no impact on the spurs.    It is assumed that the seed can assume any value from 0 to 

Fden−1.  For higher order modulators, a non-zero seed can actually impact the spurs in some 

cases.  Nevertheless, it is good to be aware of this property and be aware of the seed. 

In most cases, the seed is zero, but a non-zero seed can be introduced either unintentionally 

or intentionally.   Unintentional ways it can be introduced is for devices that do not reset the 

modulator.  For instance, this might be when the device is powered of and on or changing the 

N divider values.  A non-zero seed can also be intentionally introduced for some devices if 

one wants to use it to create a phase shift from input to output. 

 

Primary Fractional Spur Occurrence for the First Order Modulator 

Assuming that Fnum and Fden are relatively prime, fractional spurs will occur at offsets of: 

 

𝑓𝑆𝑝𝑢𝑟(𝑘) =
𝑘

𝑓𝑃𝐷 ∙ 𝐹𝑑𝑒𝑛
  ,    k = 1,2,3, …Fden − 1 (20.1)  

 

For instance, a fraction of 93/100 with a 10 MHz phase detector has spurs that occur in 

increments of 100 kHz.  For higher order modulators, there can be additional fractional spurs, 

but the primary fractional spurs often tend to be the strongest.   

The integer boundary spur is perhaps the most feared among fractional spurs and occurs at an 

offset equal to the distance to the closest integer channel.  For instance, with a fraction of 

93/100, the integer boundary spur would be at an offset of 700 kHz.   Among the fractional 

channels, the worst-case channels are usually the ones just slightly offset from the integer 

values because the integer boundary spur is closer and stronger.  For the fractional 

denominator of 100, the worst-case fractions would be 1/100 and 99/100.  The frequencies 

corresponding to these worst-case fractions are called integer boundary channels.  
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Calculation of Fractional Spurs from the Fractional Engine 

Calculation of Spurs by Fourier series 

To model the spurs, the simplest approach is to consider a PLL with an infinite loop bandwidth 

and look at the mathematical sequence produced by the modulator and disregard the discrete 

sampling action of the phase detector and any sort of fractional compensation.   In this case 

the PLL frequency will be modulated between two frequencies with a clock period that is 

equal to the phase detector period, 1/fPD. The total period of this modulation will repeat every 

Fden cycles.    The spurs are considered InBand spurs because they are inside the loop 

bandwidth;  if they were outside the loop bandwidth that the loop filter would attenuate them.  

In other words: 

 

𝑆𝑝𝑢𝑟 = 𝐼𝑛𝐵𝑎𝑛𝑑𝑆𝑝𝑢𝑟 + 𝑟𝑜𝑙𝑙𝑜𝑓𝑓 (20.2)  

 

For example, consider the fraction of 3/10 with a phase detector frequency of 1 MHz.   This 

has a sequence of 0,0,0,1,0,0,1,0,0,1,… (repeats) and has a frequency response shown in the 

following figure.   
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Figure 20.2  Fractional PLL Output for Infinite Loop Bandwidth for a Fraction of 3/10 

 

The output of the VCO can be expressed as follows: 

𝑓(𝑡) = 𝑠𝑖𝑛[(𝑓𝐼𝑁𝑇 + 𝑓𝑃𝐷 ∙ 𝑚(𝑡)) ∙ 𝑡] (20.3)  

 

m(t) is the modulating signal which has a value of 0 or 1 which is periodic over the interval 0 

to 1/(Fden∙fPD).  Consider the example the fraction 3/10 and with a phase detector frequency 

of 1 MHz.  The waveform has a repeating period of 10 μs and has the following equation over 

that interval. 
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𝑚(𝑡) = {

  0      0  𝜇𝑠 ≤ 𝑡 < 3 𝜇𝑠, 4  𝜇𝑠 ≤ 𝑡 < 6 𝜇𝑠, 7  𝜇𝑠 ≤ 𝑡 < 9 𝜇𝑠

  1      3  𝜇𝑠 ≤ 𝑡 < 4 𝜇𝑠, 6  𝜇𝑠 ≤ 𝑡 < 7 𝜇𝑠, 9  𝜇𝑠 ≤ 𝑡 < 10 𝜇𝑠
             

  (20.4)  

𝑚(𝑡) =
3

10
+∑𝑎𝑛

∞

𝑛=1

∙ cos (
𝑛 ∙ 𝜋 ∙ 𝑡

𝐿
) + 𝑏𝑛 ∙ sin (

𝑛 ∙ 𝜋 ∙ 𝑡

𝐿
)  (20.5)  

𝑎𝑛 =
2

𝐿
∙ ∫ cos (

𝑛 ∙ 𝜋 ∙ 𝑡

𝐿
) ∙ 𝑑𝑡

𝐿

0

  (20.6)  

𝑏𝑛 =
2

𝐿
∙ ∫ sin (

𝑛 ∙ 𝜋 ∙ 𝑡

𝐿
) ∙ 𝑑𝑡

𝐿

0

  (20.7)  

𝐿 =
10

𝑓𝑃𝐷
= 10 𝜇𝑠  (20.8)  

 

The modulation index for the nth fractional spur can be calculated as: 

 

𝛽 =
𝑓𝐷𝐸𝑉
𝑓𝑆𝑝𝑢𝑟

=
𝑓𝑃𝐷 ∙ √(𝑎𝑛)2 + (𝑏𝑛)2

(𝑛 𝐿⁄ )
  (20.9)  

 

The first 10 fractional spurs can be calculated as follows: 

 

n  fSpur an bn  Spur 

1 100 kHz -0.44 -0.61 0.75 -8.50 

2 200 kHz 0.36 -1.10 0.58 -10.78 

3 300 kHz 4.27 -1.39 1.50 -2.51 

4 400 kHz -1.98 -1.44 0.61 -10.28 

5 500 kHz 0.00 -1.27 0.25 -17.90 

6 600 kHz 1.32 -0.96 0.27 -17.33 

7 700 kHz -1.83 -0.60 0.28 -17.23 

8 800 kHz -0.09 -0.27 0.04 -34.86 

9 900 kHz 0.05 -0.07 0.01 -46.67 

10 1 MHz 0 0  0 None 

Table 20.1 Table of Fractional Spurs for a Fraction of 3/10 



   160         Fundamentals of Fractional Spurs 

                              

This exercise can be expanded for all of the fractional numerators with the denominator of 

10 to produce the following table: 

 

  
Fraction 

1/10 2/10 3/10 4/10 5/10 6/10 7/10 8/10 9/10 
O

ff
se

t 

1 MHz -0.1   -8.5       -8.5   -0.1 

2 MHz -6.6 -0.6 -10.8 -4.8   -4.8 -10.8 -0.6 -6.6 

3 MHz -10.9   -2.5       -2.5   -10.9 

4 MHz -14.5 -8.4 -10.3 -4.3   -4.3 -10.3 -8.4 -14.5 

5 MHz -17.9   -17.9   -3.9   -17.9   -17.9 

6 MHz -21.5 -15.5 -17.3 -11.3   -11.3 -17.3 -15.5 -21.5 

7 MHz -25.6   -17.2       -17.2   -25.6 

8 MHz -30.7 -24.7 -34.9 -28.8   -28.8 -34.9 -24.7 -30.7 

9 MHz -38.3   -46.7       -46.7   -38.3 

10 MHz                   

Table 20.2 Spurs for a Fractional Denominator of 10 and fPD= 10 MHz 

 

Phase Detector Null Property 

For Table 20.2 , note that none of the fractions produce a spur at the 10 MHz phase detector 

frequency.  This is generally true for all fractional PLLs and it is also true that there will be 

no spurs at any multiples of the 10 MHz phase detector frequency.  To reason why this is true, 

consider the waveform that the fractional spur produces as illustrated in Figure 20.2 .  The 

modulator changes the output divide every phase detector period.   For the coefficients, we 

are always integrating over some multiple of the phase detector period and multiplying by 

sines and cosines, which have a net zero value over a phase detector period.  This implies that 

all spurs at multiples of the phase detector frequency due the fractional engine will be not 

present.   However, traditional phase detector spurs will be present due to other mechanisms. 

 

In-Band Fractional Spur Tables for the First Order Modulator 

The same method used in the previous example can be used to calculate in-band fractional 

spurs for any fraction.  Table 20.3 shows simulations that for all spurs for fractional numerator 

and denominator up to 20.  This table is condensed to just show the necessary values.  For 

instance, a fraction of 5/10 can be expressed as ½ and a fraction if 13/17 is the same as 4/17. 
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Fden Fnum 
Spur Order 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 

2 1 -3.9                   

3 1 -1.6 -13.7                  

4 1 -0.9 -9.9 -20.0                 

5 
1 -0.6 -8.4 -15.5 -24.7                

2 -4.8 -4.3 -11.3 -28.8                

6 1 -0.4 -7.7 -13.5 -19.7 -28.4               

7 

1 -0.3 -7.2 -12.3 -17.3 -23.1 -31.4              

2 -7.3 -2.1 -10.4 -15.4 -18.0 -38.5              

3 -5.4 -9.1 -5.3 -10.3 -25.1 -36.5              

8  
1 -0.2 -6.9 -11.7 -16.0 -20.5 -26.0 -34.0             

3 -7.9 -6.9 -4.0 -16.0 -12.9 -26.0 -41.7             

9 

1 -0.2 -6.7 -11.2 -15.1 -18.9 -23.2 -28.5 -36.3            

2 -9.4 -1.3 -11.2 -11.4 -15.2 -23.2 -23.0 -45.5            

4 -5.7 -10.4 -11.2 -5.9 -9.8 -23.2 -32.2 -41.8            

10 
1 -0.1 -6.6 -10.9 -14.5 -17.9 -21.5 -25.6 -30.7 -38.3           

3 -8.5 -10.8 -2.5 -10.3 -17.9 -17.3 -17.2 -34.9 -46.7           

11 

1 -0.1 -6.5 -10.6 -14.0 -17.2 -20.3 -23.7 -27.7 -32.6 -40.1          

2 -11.0 -0.8 -12.2 -9.5 -14.8 -18.0 -19.2 -29.3 -27.0 -51.0          

3 -10.3 -9.4 -2.1 -14.8 -11.9 -15.1 -24.5 -19.1 -35.5 -50.3          

4 -8.7 -11.8 -7.7 -3.8 -16.4 -19.6 -13.6 -24.8 -37.9 -48.7          

5 -5.8 -11.0 -13.0 -12.4 -6.2 -9.4 -22.1 -30.0 -37.1 -45.8          

6 -5.8 -11.0 -13.0 -12.4 -6.2 -9.4 -22.1 -30.0 -37.1 -45.8          

12 
1 -0.1 -6.4 -10.5 -13.7 -16.6 -19.5 -22.5 -25.7 -29.5 -34.4 -41.8         

5 -11.5 -6.4 -10.5 -13.7 -5.2 -19.5 -11.0 -25.7 -29.5 -34.4 -53.2         

13 

1 -0.1 -6.4 -10.3 -13.4 -16.2 -18.9 -21.5 -24.4 -27.5 -31.2 -36.0 -43.3        

2 -12.4 -0.6 -13.3 -8.5 -15.1 -15.3 -18.0 -23.3 -22.6 -34.2 -30.2 -55.6        

3 -10.8 -12.4 -1.5 -11.6 -16.7 -12.3 -14.9 -24.9 -25.7 -22.4 -42.0 -54.0        

4 -8.9 -13.0 -12.2 -2.7 -10.1 -18.3 -21.0 -18.3 -16.8 -33.1 -42.6 -52.1        

5 -11.9 -9.4 -7.2 -15.1 -4.4 -17.2 -19.9 -12.5 -29.2 -28.1 -39.1 -55.1        

6 -5.8 -11.3 -13.8 -14.5 -13.2 -6.5 -9.2 -21.4 -28.6 -34.7 -40.9 -49.0        

14 

1 -0.1 -6.3 -10.2 -13.2 -15.9 -18.4 -20.8 -23.4 -26.1 -29.2 -32.8 -37.4 -44.6       

3 -12.2 -11.4 -1.3 -15.2 -12.7 -11.3 -20.8 -16.3 -22.9 -31.1 -23.8 -42.6 -56.8       

5 -9.0 -13.3 -13.4 -8.1 -3.7 -16.4 -20.8 -21.4 -13.9 -24.0 -36.0 -44.5 -53.6       

15 

1 -0.1 -6.3 -10.1 -13.1 -15.6 -18.0 -20.3 -22.6 -25.0 -27.7 -30.7 -34.2 -38.8 -45.9      

2 -13.7 -0.4 -14.3 -7.8 -15.6 -13.8 -17.7 -20.1 -20.8 -27.7 -25.4 -38.4 -33.0 -59.5      

4 -11.1 -14.0 -10.1 -2.0 -15.6 -18.0 -12.5 -14.8 -25.0 -27.7 -19.6 -34.2 -46.6 -57.0      

7 -5.9 -11.5 -14.3 -15.6 -15.6 -13.8 -6.7 -9.0 -20.8 -27.7 -33.2 -38.4 -44.0 -51.7      

8 -5.9 -11.5 -14.3 -15.6 -15.6 -13.8 -6.7 -9.0 -20.8 -27.7 -33.2 -38.4 -44.0 -51.7      

16 

1 -0.1 -6.2 -10.1 -13.0 -15.4 -17.7 -19.8 -22.0 -24.2 -26.5 -29.1 -32.0 -35.5 -40.0 -47.1     

3 -12.6 -13.9 -1.0 -13.0 -16.9 -10.0 -14.9 -22.0 -19.3 -18.9 -30.6 -32.0 -26.4 -47.7 -59.7     

5 -9.1 -13.9 -15.0 -13.0 -2.8 -10.0 -18.4 -22.0 -22.8 -18.9 -16.5 -32.0 -40.5 -47.7 -56.2     

7 -14.1 -6.2 -13.6 -13.0 -11.9 -17.7 -5.8 -22.0 -10.2 -26.5 -25.6 -32.0 -39.0 -40.0 -61.1     

17 

1 0.0 -6.2 -10.0 -12.8 -15.3 -17.4 -19.5 -21.5 -23.5 -25.7 -28.0 -30.5 -33.3 -36.8 -41.2 -48.2    

2 -14.7 -0.3 -15.2 -7.4 -16.3 -12.8 -17.9 -18.1 -20.1 -24.1 -23.3 -31.5 -27.9 -42.0 -35.4 -62.9    

3 -13.8 -13.1 -0.8 -15.9 -13.8 -9.5 -19.8 -16.0 -18.0 -26.0 -20.1 -29.0 -36.4 -27.6 -48.1 -62.0    

4 -11.3 -15.0 -13.6 -1.6 -11.6 -18.0 -18.9 -12.7 -14.7 -25.0 -28.6 -26.8 -22.0 -40.4 -50.0 -59.5    

5 -14.4 -9.5 -12.1 -15.3 -2.5 -18.3 -11.0 -19.6 -21.6 -17.2 -28.9 -17.7 -35.8 -38.9 -44.5 -62.6    

6 -9.2 -14.1 -15.5 -14.3 -8.4 -3.7 -16.4 -21.2 -23.2 -22.6 -14.2 -23.6 -34.8 -42.3 -49.1 -57.4    

7 -12.8 -14.7 -6.7 -10.7 -17.2 -15.0 -5.1 -20.6 -22.6 -11.3 -25.5 -32.4 -31.2 -33.5 -49.7 -61.0    

8 -5.9 -11.6 -14.6 -16.2 -16.9 -16.4 -14.2 -6.8 -8.9 -20.4 -27.0 -32.1 -36.7 -41.4 -46.6 -54.1    

18 

1 0.0 -6.2 -9.9 -12.8 -15.1 -17.2 -19.2 -21.1 -23.0 -25.0 -27.0 -29.3 -31.7 -34.5 -37.9 -42.3 -49.3   

5 -14.7 -11.7 -9.9 -16.5 -2.2 -17.2 -17.4 -11.9 -23.0 -15.8 -25.3 -29.3 -18.8 -38.2 -37.9 -47.8 -63.9   

7 -12.9 -15.4 -9.9 -7.3 -16.9 -17.2 -4.5 -17.4 -23.0 -21.3 -12.4 -29.3 -33.5 -29.0 -37.9 -51.5 -62.2   

19 

1 0.0 -6.2 -9.9 -12.7 -15.0 -17.0 -18.9 -20.8 -22.6 -24.4 -26.3 -28.3 -30.5 -32.9 -35.6 -39.0 -43.4 -50.3  

2 -15.7 -0.3 -16.1 -7.1 -16.9 -12.1 -18.2 -16.8 -19.9 -21.8 -22.3 -27.5 -25.6 -34.8 -30.1 -45.2 -37.5 -65.9  

3 -14.2 -15.2 -0.7 -14.3 -17.4 -8.8 -15.5 -21.0 -16.1 -18.0 -26.5 -24.8 -22.2 -35.3 -37.2 -29.8 -52.4 -64.4  

4 -13.0 -15.9 -12.1 -1.2 -16.1 -18.3 -13.3 -11.3 -21.8 -23.7 -16.8 -22.6 -31.7 -34.0 -24.2 -41.2 -53.1 -63.3  

5 -11.5 -15.7 -15.6 -10.5 -2.0 -15.9 -19.7 -19.5 -12.8 -14.7 -25.0 -29.0 -29.3 -19.9 -33.4 -44.7 -52.9 -61.7  

6 -9.3 -14.4 -16.3 -16.2 -13.4 -2.9 -9.9 -18.4 -22.3 -24.2 -23.9 -19.3 -16.3 -31.3 -39.1 -45.4 -51.6 -59.5  

7 -15.4 -9.5 -13.7 -15.4 -7.9 -18.6 -4.0 -20.3 -18.4 -20.2 -25.8 -13.4 -32.0 -25.8 -38.3 -42.8 -46.7 -65.7  

8 -14.9 -13.3 -6.6 -16.9 -11.2 -14.3 -19.4 -5.4 -21.1 -22.9 -10.9 -28.8 -27.8 -29.1 -39.8 -35.7 -50.5 -65.2  

9 -5.9 -11.7 -14.8 -16.6 -17.6 -17.8 -17.0 -14.6 -6.9 -8.8 -20.1 -26.4 -31.2 -35.5 -39.6 -43.9 -48.9 -56.2  

20 

1 0.0 -6.2 -9.9 -12.6 -14.9 -16.9 -18.7 -20.5 -22.2 -23.9 -25.7 -27.5 -29.5 -31.6 -34.0 -36.7 -40.0 -44.3 -51.2 

3 -15.1 -14.5 -0.6 -16.8 -14.9 -8.5 -19.6 -16.3 -15.4 -23.9 -18.9 -23.3 -30.4 -23.2 -34.0 -40.9 -30.7 -52.7 -66.3 

7 -9.3 -14.5 -16.6 -16.8 -14.9 -8.5 -3.6 -16.3 -21.3 -23.9 -24.8 -23.3 -14.4 -23.2 -34.0 -40.9 -46.8 -52.7 -60.4 

9 -16.0 -6.2 -15.7 -12.6 -14.9 -16.9 -12.9 -20.5 -6.2 -23.9 -9.7 -27.5 -23.6 -31.6 -34.0 -36.7 -45.9 -44.3 -67.2 

Table 20.3 Calculated Spur Levels for the Uncompensated First Order Modulator 

 

Integer Boundary Spur Property 

Notice that the integer boundary spurs approach 0 dBc as Fnum/Fden approaches zero and if 

this ratio is less than about 1/5th, the spur is typically within about 1 dB of this limit.   This 

property holds as a general rule of thumb. 
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Impact of Fractional Compensation on Fractional Spurs 

So far, spurs have been discussed with pure mathematical calculations. On devices where the 

fractional compensation can be disabled, there tends to be very good agreement between the 

mathematically calculated spurs and the actual measurement.   However, high spurs are never 

desirable so devices tend to have analog compensation in the form of an adjustable delay at 

the phase detector or charge injected into the loop filter.  For these kinds of compensation, the 

spurs can be typically modeled using pure mathematics augmented with some fixed constant 

can be subtracted from these calculated values to get the spur levels.    

Spurs for a device are typically specified with the InBandSpur metric which just subtracts this 

constant away from the default integer boundary spur level of 0 dBc.   It also makes it easy to 

measure the quantity directly.  For instance, if a PLL has an InBandSpur of −18 dBc, this 

means that one can set a fraction such as 1/100 and measure the integer boundary spur within 

the loop bandwidth and expect around −18 dBc.   All the other spurs would be expected to be 

shifted down by this factor of 18 dBc as well. 

For higher level delta-sigma PLLs, there is a more accurate way to calculate the spurs, but one 

can get a reasonable approximation by treating them as compensated spurs from a first order 

modulator using the InBandSpur metric.  The following table shows this metric for various 

Texas Instruments PLLs. 

 

PLL InBandSpur Comments 
Uncompensated 

Fractional PLL 
0 

This does not apply to fractional spur levels worse than about –12 

dBc after they have been filtered by the loop filter. 

LMX2350/52/53/54 −15 InBandSpur for second fractional spur is closer to –12 dBc 

LMX2364 −18 
InBandSpur for the second fractional spur is closer to –13 dBc.  Spur 

level is sensitive to fractional denominator. 

LMX2470/71 

−20 to –50 

 

−35 typical 

The fractional spurs on this part are better when the phase detector 

frequency is around 20 MHz and a fractional denominator greater 

than 100.   There is benefit expressing fractions with higher fractional 

denominators, even if the mathematical values are equivalent.  

LMX2485/86/87 
−55  to −65 

Typical 

This is for a fourth order modulator inside the loop bandwidth with a 

20 MHz phase detector frequency.   

Table 20.4 In-Band Compensated Fractional Spurs for Various PLLs 

 

Although the modeling of spurs is very worthwhile, fractional spurs can have many 

contributors.  For the first order modulator, the models tend to match measured data better, 

but there is no substitute for verification on the bench. 
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Fractional Spur Avoidance 

Introduction 

The concept of spur avoidance involves avoiding fractions that are known to have high spurs 

by either simply avoiding these frequencies or by shifting internal frequencies in the PLL.   

 

Worst Case Numerators for the First Fractional Spur 

In most applications, it is the first fractional spur at offset of 1/(fPD∙fDEN) that causes the most 

issues.  Although it is known that 1 and Fden−1 are the worst cases for this spur, there is also 

interest in knowing the next worst-case fractions as shown in the following table. 

 

Fractional  
Denominator 

In-Band Fractional Spur Fractional Numerator 

Worst-case 2nd Worst 3rd Worst 4th Worst Worst 2nd Worst 3rd Worst 4th Worst 

2 -3.9 x x x 1 X x x 

3 -1.6 x x x 1 X x x 

4 -0.9 x x x 1 X x 2 

5 -0.6 -4.8 x x 1 2 x x 

6 -0.4 x x x 1 X x 3 

7 -0.3 -5.4 -7.3 x 1 3 2 x 

8 -0.2 -7.9 x x 1 3 x x 

9 -0.2 -5.7 -9.4 x 1 4 2 x 

10 -0.1 -8.5 x x 1 3 x x 

11 -0.1 -5.8 -8.7 -10.3 1 5 4 3 

12 -0.1 -11.5 x x 1 5 x x 

13 -0.1 -5.8 -8.9 -10.8 1 6 4 3 

14 -0.1 -9.0 -12.2 x 1 5 3 x 

15 -0.1 -5.9 -11.1 -13.7 1 7 4 2 

16 -0.1 -9.1 -12.6 -14.1 1 5 3 7 

17 0.0 -5.9 -9.2 -11.3 1 8 6 4 

18 0.0 -12.9 -14.7 x 1 7 5 x 

19 0.0 -5.9 -9.3 -11.5 1 9 6 5 

20 0.0 -9.3 -15.1 -16.0 1 7 3 9 

21 0.0 -6.0 -11.6 -13.2 1 10 5 4 

22 0.0 -9.3 -13.3 -15.5 1 7 9 3 

23 0.0 -6.0 -9.4 -11.7 1 11 8 6 

24 0.0 -13.4 -15.7 -17.6 1 5 7 11 

25 0.0 -6.0 -9.4 -11.7 1 12 8 6 

26 0.0 -9.4 -13.5 -15.9 1 9 5 11 

27 0.0 -6.0 -11.8 -13.5 1 13 7 11 

28 0.0 -9.4 -13.6 -17.6 1 9 11 3 

29 0.0 -6.0 -9.4 -11.8 1 14 10 7 

30 0.0 -16.1 -18.8 -19.4 1 13 11 7 

31 0.0 -6.0 -9.4 -11.8 1 15 10 8 

32 0.0 -9.4 -13.7 -16.2 1 11 13 9 

33 0.0 -6.0 -11.9 -13.7 1 16 8 13 

34 0.0 -9.5 -13.7 -16.3 1 11 7 5 

35 0.0 -6.0 -9.5 -11.9 1 17 12 9 

36 0.0 -13.7 -16.4 -19.5 1 7 5 13 

37 0.0 -6.0 -9.5 -11.9 1 18 12 9 

38 0.0 -9.5 -13.8 -16.4 1 13 15 11 

39 0.0 -6.0 -11.9 -13.8 1 19 10 8 

40 0.0 -9.5 -16.5 -18.4 1 13 17 9 

41 0.0 -6.0 -9.5 -11.9 1 20 14 10 

42 0.0 -13.8 -19.8 -20.9 1 17 19 13 

43 0.0 -6.0 -9.5 -11.9 1 21 14 11 

44 0.0 -9.5 -13.8 -16.6 1 15 9 19 

45 0.0 -6.0 -11.9 -16.6 1 22 11 13 

46 0.0 -9.5 -13.8 -16.6 1 15 9 13 

47 0.0 -6.0 -9.5 -12.0 1 23 16 12 

48 0.0 -13.8 -16.6 -20.1 1 19 7 13 

49 0.0 -6.0 -9.5 -12.0 1 24 16 12 

50 0.0 -9.5 -16.6 -18.6 1 17 7 11 

Table 20.5 Calculated First Fractional Spur 
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From this table, we see that there is a pattern to the worst case numerators that starts to form 

once the numerator gets larger than about ten. To see the pattern, first generate the sequence: 

 

1,   𝑓𝑙𝑜𝑜𝑟(𝐹𝑑𝑒𝑛 2⁄ ), 𝑓𝑙𝑜𝑜𝑟(𝐹𝑑𝑒𝑛 3⁄ ), 𝑓𝑙𝑜𝑜𝑟(𝐹𝑑𝑒𝑛 4⁄ ), 𝑓𝑙𝑜𝑜𝑟(𝐹𝑑𝑒𝑛 5⁄ ),   … (20.10)  

 

If it turns out that the term in the sequence is an integer before the floor function is applied, 

then just skip to the next one.   Once this is found, the spur is referenced from the following 

table. 

 

Term 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 

Spur  

Power 
0.0 -6.0 -9.5 -12.0 -14.0 -15.6 -16.9 -18.1 -19.1 -20.0 -20.8 -21.6 -22.3 -22.9 -23.5 -24.1 -24.6 -25.1 -25.6 -26.0 

Table 20.6 Fractional Spur Chart for First Primary Fractional Spur 

 

By observing the kth term in Table 20.6 , the spur power follows the following formula. 

 

𝑆𝑝𝑢𝑟 𝑃𝑜𝑤𝑒𝑟 = 20 ∙ 𝑙𝑜𝑔(𝑘) (20.11)  

 

For example, consider the case where Fden = 100, which produces a sequence of   1, 50, 33, 

25, 20, 16, ….  The worst case numerators would be 1 and 99  and this would correspond to 

an unfiltered spur level of 0 dBm.  For the second element, 50 has a common factor with 100, 

so we skip this one.  It therefore follows that the second worst case pair of fractions would be 

33/100 and 67/100, which would have an InBandSpur of −9.5 dBc.  The next number is 25.  

Because this has a factor in common with 100, there is no spur here.  The next number is 20, 

which also has a factor in common with 100, so there is no spur here either.  Now the exception 

comes when the same number is repeated in the sequence.  In this case, the spur power is 

correct, but the numerator is slightly shifted.   

 

Worst Case Numerators for the Second  and Higher Order Fractional Spurs 

For spurs higher than first order, the worst case denominators for the nth fractional spur are 

when the numerator is n and Fden−1.  Avoiding the first primary fractional spur is typically 

the main focus of fractional spur avoidance.   For instance, the worst case fractions for the 

second primary fractional spur with a denominator of 101 would be 2/101 and 99/101.   

However for those interested in the second primary fractional spur, the offset would be 

2/(fPD∙fDEN) and the worst case pair of numerators would be 2 and Fden – 2.  In most cases, 

the second worst-case spur is at numerator of 1 and Fden−1, but there are exceptions.  In this 

case, it is probably best to use the table.  For the nth fractional spur, this is typically worst  

when the fractional numerator is  n or Fden − n. 
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Fractional  

Denominator 

In-Band Fractional Spur Fractional Numerator 

Worst-case 2nd Worst 3rd Worst 4th Worst Worst 2nd Worst 3rd Worst 4th Worst 

2 x x x x x X 1 x 

3 −13.7 x x x 1 X x x 

4 −3.9 −9.9 x x 2 1 x x 

5 −4.3 −8.4 x x 2 1 x x 

6 −1.6 −7.7 x x 2 1 x x 

7 −2.1 −7.2 −9.1 x 2 1 3 x 

8 −0.9 −6.9 −6.9 x 2 1 3 x 

9 −1.3 −6.7 −10.4 x 2 1 4 x 

10 −0.6 −4.8 −6.6 −10.8 2 4 1 3 

11 −0.8 −6.5 −9.4 −11.0 2 1 3 5 

12 −0.4 −6.4 −6.4 x 2 1 5 x 

13 −0.6 −6.4 −9.4 −11.3 2 1 5 6 

14 −0.3 −5.4 −6.3 −7.3 2 6 1 4 

15 −0.4 −6.3 −11.5 −14.0 2 1 7 4 

16 −0.2 −6.2 −6.2 −7.9 2 1 7 6 

17 −0.3 −6.2 −9.5 −11.6 2 1 5 8 

18 −0.2 −5.7 −6.2 −9.4 2 8 1 4 

19 −0.3 −6.2 −9.5 −11.7 2 1 7 9 

20 −0.1 −6.2 −6.2 −8.5 2 1 9 6 

21 −0.2 −6.2 −11.8 −13.4 2 1 10 8 

22 −0.1 −5.8 −6.1 −8.7 2 10 1 8 

23 −0.2 −6.1 −9.5 −11.8 2 1 7 11 

24 −0.1 −6.1 −6.1 −11.5 2 1 11 10 

25 −0.2 −6.1 −9.5 −11.9 2 1 9 12 

Table 20.7 Calculated Second Fractional Spur 

 

Optimal Fraction Choices 

Consider the case where a fractional PLL is required for finer tuning resolution, but the 

required frequencies span is much less than the phase detector frequency.  From (20.10) and 

Table 20.6 , one would want to stay away from fractions of 0, ½, 1/3, 2/3, and so on.  It 

therefore makes sense to choose a fraction that is as far as possible.  If one considers the total 

integrated spur energy from 0 to fPD, and considers only prime fractional denominators, one 

of the optimal points for lowest spurs tends to be around 5/12.   If one was to consider the 

sequence of fractional numerators, this is right between Fden/3 and Fden/4.   

For instance, suppose one has the choice of VCO frequency in the range of 2400 to 2412 MHz 

from a 12 MHz phase detector frequency.  The device operates with a fixed frequency, but 

this frequency needs to be able to tune ±100 kHz in 1 kHz increments.  What would be a good 

choice for the VCO frequency?  The worst cases would be 2400, 2412, and 2406 MHz, since 

moving the VCO frequency slightly would generate the highest spurs.  A good choice would 

be 2405 MHz as this is fairly far from these worst-case spurs and moving the VCO frequency 

a small amount would still be far away from problematic frequencies. 

 

Direct Spur Avoidance 

Direct spur avoidance is simply deciding to not use the channels that cause the most grief.  In 

some standards, it is acceptable to simply not use particular channels.  In other cases, it might 

be desirable to have a PLL that has a wide tuning range, but not every frequency is used.  This 

could be the case in applications where the PLL is being used to clock an A/D converter. 
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Spur Avoidance by Shifting Phase Detector Frequency 

If a particular output frequency is necessary, one approach is to shift the phase detector 

frequency.  Sometimes this can be done by shifting the fOSC frequency, and other times it can 

be done with the same fOSC frequency if the device as a programmable multiplier on the input.  

In these cases, with the programmable input multiplier, be aware that there are spurs other 

than those due to the fractional circuitry that are caused by the fOSC signal mixing with the fVCO 

or fOUT signals.  For example, the following figure, the programmable multiplier can be used 

to shift he phase detector from 100 MHz to 75 MHz in order to avoid the integer boundary.  

This significantly mitigates the spur due to the fractional circuitry, but it is still possible to get 

a spur at 100 kHz offset due to the mixing of the fOSC and fVCO frequencies. 
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Figure 20.3  Spur Avoidance by Shifting the Phase Detector Frequency 

 

Spur Avoidance by Shifting fVCO 

It is getting more common to have PLL synthesizers with a divider following the VCO.  In 

these situations, it is often the case that there are multiple frequencies for the VCO that can 

achieve the same output frequency.  In this situation, sometimes it can make a difference for 

the fractional spurs.  In the following diagram, if the output divider was to support values from 

1 to 10 and the VCO was to tune from 2 to 3 GHz, 2750.5 MHz would be a better choice of 

the VCO frequency for spurs as it would avoid the integer boundary, whereas 2200.4 MHz 

would be much closer to an integer boundary. 
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Figure 20.4  Choosing the Best VCO Frequency for Spur 
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Conclusion 

Fractional spurs can be very complicated, and the understanding of the first order modulator 

is the first step to understanding the fundamental patterns of fractional spurs.   For the first 

order modulator, the key patterns for the spur levels and the offset frequencies are easier to 

calculate and match measured results fairly well.   Higher order modulators add more 

exceptions and complications to fractional spurs, but understanding the fundamental concepts 

first is key to understanding these more complicated cases. 
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 Appendix:   Justification of the Fundamental Properties of Fractional N 

 

Equivalent Fraction Principle Justification Using the Modulator Sequence 

This is easiest to justify by just looking at the fractional sequence for a fraction of 3/12. 

Accumulator: 3,6,9,0,3,6,9,0, … (repeats) 

Output: 0,0,0,1,0,0,0,1, … (repeats) 

The equivalent fraction of ¼ has the sequence of: 

Accumulator: 1,2,3,0,1,2,3,0, … (repeats) 

Output: 0,0,0,1,0,0,0,1, … (repeats) 

We see that the output sequence is the same in both cases as the accumulator value is just 

multiplied by three.   This same reasoning can be used to show the equivalent property holds 

in general for the fractions of Fnum/Fden and (k∙Fnum)/(k∙Fden). 

 

Initial State Independence Principle Justification Using the Modulator Sequence 

Consider a fractional PLL with an initial state of Seed0  < Fden and allow for the possibility 

of the fraction not being lowest terms with numerator of g∙Fnum and denominator of g∙Fden.  

After Fden  cycles of the phase detector, the accumulator value will be: 

(𝑆𝑒𝑒𝑑0 + 𝑘 ∙ 𝑔 ∙ 𝐹𝑛𝑢𝑚)     %    𝑔 ∙ 𝐹𝑑𝑒𝑛 (20.12)   

After k=Fden clock cycles, we see that this returns the same initial state of Seed0.  For that 

matter, one could argue that the accumulator state at any two periods that are Fden clock 

cycles apart will have the same seed, and thus this establishes the sequence length is Fden.  

The output of the modulator is shifted each cycle by adding Seed0 and taking modulo Fden.  

This implies that the output of the modulator will be the same pattern, but possibly shifted.  

The following example illustrates this for a fraction of 6/20 and a Seed0=7, which has the 

same sequence advanced one clock cycle 

 

Seed0=0  Seed0=7 

Cycle Accumulator Output  Cycle Accumulator Output 

0 0 0  0 7 0 

1 6 0  1 13 0 

2 12 0  2 19 0 

3 18 0  3 5 1 

4 4 1  4 11 0 

5 10 0  5 17 0 

6 16 0  6 3 1 

7 2 1  7 9 0 

8 8 0  8 15 0 

9 14 0  9 1 1 

10 0 1  10 7 0 

11 6 0  11 13 0 

12 12 0  12 19 0 

Table 20.8 Demonstration that Seed Does Not Impact the Output 
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Spur Symmetry Property for the First Order Modulator 

Start with the fraction of 3/10 and calculate the output of the modulator. 

Accumulator: 3,6,9,2,5,8,1,4,7,0, … (repeats) 

Output: 0,0,0,1,0,0,1,0,0,1, … (repeats) 

 

The modulator output and sequence for the symmetric fraction of  7/10 is: 

Accumulator: 7,4,1,8,5,2,9,6,3,0,7,4,1,8,5,2,9, (repeats last 10 entries) 

Output: 0,1,1,0,1,1,0,1,1,1,0,1,1,0,1,1,0, (repeats last 10 entries) 

 

The pattern many not be as obvious, but if we instead think of 7 as −3, as they are equivalent 

modulo 10, we get the following sequence, which produces the inverted output of 3/10. 

Accumulator: −3,−6,−9,−2,−5,−8,−1,−4,−7, 0, (repeats last 10 entries) 

Output:  1,  1, 1, 0,  1, 1, 0, 1,  1, 0, (repeats last 10 entries) 

 

This principle can be generalized to any fraction of the form Fnum/Fden. 

 

 

Primary Fractional Spurs for the First Order Modulator 

As it can be assumed that Fnum and Fden have no common factors, it can be shown that the 

length of the fractional sequence is Fden.  To reason this, we can assume that the modulator 

starts out with a state of zero and after k cycles, the accumulator output is a multiple of Fden.  

Clearly after Fden cycles this is true, but it needs to be established that it is not something 

smaller.  Consider the accumulator output.    

 

Accumulator: 0, Fnum, …   , Fnum∙k, … (repeats) 

 

In other words, 

 

𝐹𝑛𝑢𝑚 ∙ 𝑘 ≡ 0 (𝑚𝑜𝑑  𝐹𝑑𝑒𝑛) (20.13)   

 

For this modular equation, the fact that Fnum and Fden are relatively prime guarantees that 

the inverse of Fnum exists and therefore k must be a multiple of Fden.  So it follows that the 

sequence repeats every Fden cycles. 
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Chapter 21      Delta Sigma Fractional Spurs 

 

Introduction 

Delta sigma fractional PLLs build upon the foundation of the first order modulator by adding 

the concepts of higher order modulators.  Higher order modulators reduce spurs by generating 

a sequence containing more than just two divide values.  Perhaps the most common 

implementation is the MASH (Multi-stAge Shaping) architecture.  Although it reduces the 

spurs, additional spurs can also be created.  This chapter discusses some key delta sigma 

fractional concepts. 

 

Comparison of Higher Order Delta Sigma PLLs to the First Order Modulator 

The first order modulator has already been discussed to establish some of the fundamentals of 

fractional N PLLs.  With higher order modulators, these fundamentals are a good starting 

point, but they do not fully hold as shown in Table 21.1 . 

 

Property First Order Modulator Delta Sigma PLL 

Integer Boundary 

Spur Offset 
Offset frequency is distance to closest integer channel 

Phase Detector Nulls 
Fractional engine produces no spur at multiples of the phase detector 

Frequency. 

Equivalent Fractions Have the same spur 
Have same spurs if the initial state is zero or if there 

is a large amount of randomization. 

Symmetric Fractions Have the same spur 
Have the same spurs if fraction is well-randomized, 

but not in general. 

Initial State 

Independence 
Does not impact spurs 

Can impact spurs if the fraction is not well-

randomized 

Fractional Spur 

Offsets 

Occur at integer 

multiples of fPD/Fden 

Have spurs at fPD/Fden, but also can get additional 

sub-fractional spurs, depending on fractional 

denominator and modulator order. 

Table 21.1 Comparison of Delta Sigma PLL to the First Order Modulator 

 

Spur Calculations for Higher Order Modulators 

Sub-Fractional Spurs 

For higher order modulators, the sequence can have a longer repeat length.   Consider the 

example of a third order modulator with a fraction of 3/10 which produces the following 

modulator sequence. 

0,1,0,0,0,1,1,−1,0,2,−2,3,−2,2,−1,0,2,0,−1,1, … (repeats) … 

In this case the sequence has a repeat length of 20, not 10, so this implies that the spurs will 

have half the offset frequency.  If the phase detector frequency was to be 10 MHz, then the 

spurs at offsets of 1,2,3,4,5,6,7,8, and 9 MHz would be considered primary fractional spurs 

and the spurs at offsets of 0.5,1.5,2.5,3.5,4.5,5.5,6.5,7.5,8.5, and 9.5 MHz would be 
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considered sub-fractional spurs.  As the first sub-fractional spurs start at half  of the offset of 

the primary spurs, the can be considered as ½ sub-fractional spurs.  For the MASH 

architecture, the potential occurrence of these sub-fractional spurs depends on the simplified 

fractional denominator and modulator order.  Through simulations, the following table shows 

when they occur: 

 

Fden Factors 
1st Order 

Modulator 

2nd Order 

Modulator 

3rd Order 

Modulator 

4th Order 

Modulator 

No Factor of 2 or 3 None None None None 

Factor of 2 but not 3 None ½ ½ 1/4 

Factor of 3 but not 2 None None 1/3 1/3 

Factor of 2 and 3 None ½ 1/6 1/12 

Table 21.2 Simplified Fractional Denominator and Sub-Fractional Spurs 

 

These properties of sub-fractional spurs hold consistently and are proven in the appendix by 

looking at the modulator sequence. 

 

Impact of the Initial Modulator State (Seed) 

Initial State is Device Specific 

For all the derivations for the seed in this book, it is assumed that the accumulator counts up 

and starts at zero and there are no clock delays.  However, some devices might have 

accumulators that count down or there could be clock delays.  This could have the impact of 

shifting seeds from Seed to Fden − Seed, or translating their values.  If this is the case, then 

all the theory concerning seeds still holds, but the impact is that the actual seed programmed 

to the part may be translated.  This book assumes no delays and the accumulators count up, 

but the reader should be aware that some PLLs may work differently. 

 

Impact of Initial State 

For delta sigma modulators of higher than first order, it turns out that the initial accumulator 

state can impact the spurs.  The impact of nonzero seeds can be beneficial or harmful.   In 

general, these principles hold: 

• Seeds tend to have minimal impact for larger fractional denominators that are on the order 

of 500 or greater. 

• Seeds tend to have minimal impact when dithering is used. 

• Fractions that are not lowest terms with a non-zero seed value can get spurs in addition to 

what would be expected of the simplified fraction if the seed does not divide into both the 

numerator and denominator. 

• A fraction with numerator zero can have fractional spurs if the seed is non-zero. 
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One characteristic that nonzero seeds bring is that they can create spurs for fractions that are 

not zero or that do not simplify.  For instance, (21.1) shows the same PLL with a 20 MHz 

phase detector and a fraction of 0/100.  The blue curve is with a seed of zero and has no 

fractional spurs.  The red curve has a seed of one and it can be seen that this creates primary 

fractional spurs at 2 MHz offset.   

 

 

Figure 21.1  LMX2582 with Fraction of 0/100 and fPD=20MHz with Seed of 1 

 

The initial state can also be used to improve spurs in some situations as well.  In Figure 21.2 

, the blue trace shows that we can see the introduction of a seed of 11 to the first stage 

eliminates the primary fractional spur at 100 kHz and reduces the other spur.  The first reaction 

is likely to question the reliability and repeatability of this effect.  This seed value was 

calculated based on pure mathematics and not just measurement.   As fractional spurs have 

many causes, one does have to be aware the programmable seed only affects spurs due to the 

MASH engine;  if the spur is due to crosstalk, then the effect of the seed can be less than 

expected or nothing at all. 
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Figure 21.2  Improvement for a Seed of 11 and 2nd Order Modulator with Fraction of 

53/200, fPD=20MHz, Pre-N Divide=2 

 

Restoring the Symmetrical Fraction Property with Seeds 

In general, symmetric fractions like 3/10 and 7/10 do not have the same spurs for modulators 

higher than first order.  However, it is possible to restore this property by using the seed values 

in Table 21.3 .  This table was derived by simulations and assumes that the fraction is lowest 

terms.  If the fraction is not, then seed should be multiplied by the greatest common divisor of 

the fractional numerator and denominator. For instance, if one has a fraction of 55/100 with a 

second order modulator, a seed of 5, not 1 should be used.  If the seed of 1 was to be used, it 

would generate additional spurs. 

 

Modulator Order Seed0 Seed1 Seed2 Seed3 

First 0 n/a n/a n/a 

Second 1 0 n/a n/a 

Third 2 1 0 n/a 

Fourth 4 2 1 0 

Table 21.3 Symmetrical Seed Values 
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Randomization 

Concept of Randomization 

The basic concept of randomization is to change the ordering of the delta sigma sequence 

while keeping the average value the same.  This can theoretically be done with the first order 

modulator, but typically is done more with the higher order delta sigma modulators.   Consider 

the following sequence: 

0,1,0,−1,0,2 … (repeats) … 

Now compare to this sequence; 

0,1,0,−1,0,2, 2,0,−1,0,1,0… (repeats) … 

If we compare these two sequences, we see that they both contain the same numbers, except 

that the second sequence has a longer repeat length and therefore spreads out the spur energy.  

When randomization is used, the order is changed, but the repeat sequence for the dithered 

sequence for a PLL is theoretically very much longer.  It is also typically the case that dithering 

is used for larger fractions and larger equivalent fractions are used.  For example, instead of 

expressing the fraction as 1/3, it could be expressed as 1000000/3000000.   This is known as 

a larger equivalent fraction.  By doing so and combining with dithering, the randomization is 

increased.  If no randomization is used and the initial modulator state is zero, this is the same 

fraction as 1/3.   

 

Randomization Through Larger Unequivalent Fractions 

Another approach to randomization is to use a larger unequivalent fraction.  This means that 

the fraction is expressed by a large fraction that is very close, but slightly offset from the 

original.  For instance, the fraction of 1/3 can be expressed as 1000000/3000001.  In this case, 

this can actually help reduce some of the primary fractional spurs.   There may be some very 

low spur energy, but if the offset is low enough, it might not be a concern. 

 

Figure 21.3  Impact of Fractional Denominator on Randomization  
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 Non-Ideal Effects of the Delta Sigma Modulator 

Charge Pump Nonlinearity 

For delta sigma PLLs, charge pump nonlinearity is very important.   If the charge pump is not 

linear, then the spurs at higher frequency will mix down to much lower offset frequencies 

before the loop filter has an opportunity to shape them.  For delta sigma modulator phase 

noise, it looks like a noise floor as shown in Figure 21.4 .  Although this is showing phase 

noise, this shaping also applies to spurs because delta sigma phase noise is actually spurs that 

are very close together.  Due to nonlinearity, the spurs at lower offsets do not follow the 

calculations as the Fourier series would predict.  In fact, it is easier to just use the concept of 

InBandSpur as used for the first order modulator. 

 

Figure 21.4  Delta Sigma Noise Shaping Example 

 

Mash Clock Distortion 

Another thing that can rob delta sigma PLLs of spur performance is the MASH clock 

distortion.   So far, it has been assumed that the loop bandwidth is infinite and the output of 

the VCO perfectly follows the N counter modulation which happens at the phase detector rate.  

However, the loop bandwidth will be less than this rate and the net effect is that time period 

that the modulator stays at each N divider state is not exactly the phase detector period, but 

depends on the Value of the N divider.   In general, if the loop bandwidth is more than twice 

the spur frequency of interest, then this will help reduce the impact of the MASH clock 

distortion.  Also, this effect is much less for feedback divider values of 50 or greater, but still 

can be a consideration.  
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Optimization of Fractional Settings 

Now that fractional settings have been discussed, the next question would be how to optimize 

how to express the fraction, the MASH order, MASH seed, and dithering.  Let’s assume that 

all has been done to avoid the worst case fractions.  The next thing is to express the desired 

fraction in the forms of a lowest terms fraction of Fnum/Fden.  Table 21.4 shows guidelines 

that should always be followed. 

 

Condition 

Always 

Best 

Setting 

Why 

Fnum = 0 
Integer 

Mode 

There is no reason to add any fractional energy for an 

integer N divide.  Many fractional PLLs may automatically 

disable the fractional engine for this case. 

Fden ≤ 7 
1st Order 

Modulator 

Delta sigma modulators push low frequency spurs to higher 

frequencies, depending on the modulator order.  The point 

where all the modulators have the same noise is fPD/6 

(discussed later).  So higher order modulators will be worse 

spurs for these very low Fden Values 

Table 21.4 Always Best Guidelines 

 

 

 

Never Best 

Setting 
Condition(s) Why 

Integer Mode Fnum>0 Cannot hit the frequency 

Randomization 

• Integer Mode 

• 1st Order Modulator 

• 2nd Order Modulator with Fden 

Odd 

• 3rd or 4th Order Modulator with 

Fden not divisible by 2 or 3 

Randomization is mainly for 

reducing sub-fractional spurs.  

In any one of these four 

conditions, there are no sub-

fractional spurs to reduce and 

randomization may add 

unwanted phase noise. 

Table 21.5 Never Best Guidelines 

 

Now assuming that the “Always Best” and “Never Best” best guidelines have been followed, 

this will not converge to a definitive answer to the modulator order whether to use 

randomization for the majority of cases.  The following table gives some more general 

recommendations. 
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Condition Recommendation Why 

N Divider 

 

< 50 

Use lower order modulators, 

although this is part specific.   

 

As a rough guideline, you 

want at least 50 to use the 4th 

order modulator, 30 to use the 

3rd Order Modulator, and 15 

use the 2nd order modulator 

MASH clock distortion becomes an issue 

at lower N divider values and causes higher 

spurs. 

fPD/Fden 

 

> 50∙ BW 

1st Order Modulator 

The first fractional spur will be far outside 

the loop bandwidth and likely to be 

crosstalk dominated. 

Fden%2 > 0 

Fden%3 > 0 

3rd or 4th Order Modulator  

with No Randomization 

 

In this case, there are no sub-fractional 

spurs, so one can use these higher order 

modulators without the fear of them 

Fden%2=0 

Fden%3>0 

3rd Order Modulator 

 

4th Order Modulator with 

Randomization 

The 2nd and 3rd Order modulator will both 

have only the ½ sub-fractional spur, but the 

3rd order likely has better primary 

fractional spurs.  Use dithering with the 3rd 

Order modulator if the added phase noise is 

worth reducing the ½ sub-fractional spurs.   

The 4th order modulator will have the 1/4th 

sub-fractional spur, so likely 

randomization will be needed. 

Fden%2>0 

Fden%3=0 

 

2nd Order Modulator with No 

Randomization 

 

Or 

 

3rd and 4th Order Modulator 

with Randomization 

The 2nd order modulator will have less sub-

fractional spurs and add the least noise. 

 

If the 3rd or 4th order modulator has better 

primary fractional spurs, then dithering 

probably will be required to reduce the 

additional sub-fractional spurs. 

Table 21.6 Recommendations and Guidelines for Choosing Modulator and Dithering 

 

Conclusion 

Delta sigma spurs add the concepts of modulator order and dithering to fractional spurs.  

Although they are more complicated, they do offer better fractional spurs. 
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Appendix    Occurrence of Fractional Spurs for Delta Sigma Modulators 

Offsets of Primary and Sub-Fractional Spurs 

The occurrence of fractional spurs can be understood mathematically by looking at the 

sequence from the accumulator.  If one looks at the diagram of the delta sigma modulator and 

focuses just the accumulator value, we see the accumulator value for the next clock cycle is 

equal the accumulator value at the current clock cycle plus the output current quantizer at the 

current stage.   
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Figure 21.5  3rd Order Modulator 

 

This diagram is equivalent to the one previously shown as all that has been done is that 

everything has been multiplied through by Fden and the quantizers work with Fden and not 

one.   Following the diagram, we can say for the nth stage and the kth clock cycle, the 

accumulator state (A) and the quantizer output (Q) would be; 

 

𝑄𝑛(k) ≡ A𝑛(𝑘)                                                 (𝑚𝑜𝑑 𝐹𝑑𝑒𝑛)  (21.1)  

𝐴𝑛+1(𝑘 + 1) ≡ 𝐴𝑛+1(𝑘) + 𝑄𝑛+1(𝑘)             (𝑚𝑜𝑑 𝐹𝑑𝑒𝑛)  (21.2)  

 

This leads to the following conclusion: 

𝐴𝑛+1(𝑘 + 1) ≡ 𝐴𝑛+1(𝑘) + 𝐴𝑛(𝑘 + 1)             (𝑚𝑜𝑑 𝐹𝑑𝑒𝑛)  (21.3)  

This difference equation has the following solution: 

𝐴𝑛+1(𝑘) ≡ ∑𝐴𝑛

𝑘−1

𝑖=0

(i + 1) ≡∑𝐴𝑛

𝑘

𝑖=1

(i)             (𝑚𝑜𝑑 𝐹𝑑𝑒𝑛)  (21.4)  
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Without loss of generality, we can also assume the following: 

 

𝐴𝑛(0) ≡ 0             (𝑚𝑜𝑑 𝐹𝑑𝑒𝑛)  (21.5)  

 

If one assumes a nonzero seed value, this will not change anything as it would appear on both 

sides of the equations that we end up solving and cancel out. 

 

Accumulator Symbol Accumulator State 
Additional 

Restrictions Imposed 

First A1(k) 𝐹𝑛𝑢𝑚 ∙ 𝑘              k ≡ 0   (mod   Fden) 

Second A2(k) 𝐹𝑛𝑢𝑚 ∙
𝑘 ∙ (𝑘 + 1)

2
              

k ≡ 0   (mod  2∙Fden)  

(only if Fden is even) 

Third A3(k) 𝐹𝑛𝑢𝑚 ∙
𝑘 ∙ (𝑘 + 1) ∙ (𝑘 + 2)

6
 

k ≡ 0   (mod  3∙Fden)  

(only if Fden is divisible 

by 3) 

Fourth A4(k) 𝐹𝑛𝑢𝑚 ∙
𝑘 ∙ (𝑘 + 1) ∙ (𝑘 + 2) ∙ (𝑘 + 3)

24
 

k ≡ 0   (mod  4∙Fden)  

(only if Fden is divisible 

by 2) 

Table 21.7 Modulator Table 

 

Table 21.7 shows the fundamental result that the first order modulator has no sub-fractional 

spurs and the 2nd order modulator has ½ sub fractional spurs for an even denominator.  For 

the third order modulator, it shows that there can be ½ sub fractional spurs if the denominator 

and a denominator divisible by 3 can create 1/3 sub fractional spurs or even 1/6 sub-fractional 

spurs if the denominator is even.  For the fourth order modulator, it shows how one can get 

½, 1/3, or 1/12 sub-fractional spurs depending on if the denominator has factors of 2 and 3.    

 

More Rigorous Derivations 

To derive these rules in Table 20.7 , the concept is to set the accumulator state equal to zero 

and see when the soonest next clock cycle will be when the accumulator returns to this state.  

This is done by solving modular equations to find restrictions on k to find the soonest nonzero 

clock cycle when this occurs for all the modulators.  The division/multiplication from 

reference [2] that is very useful for solving equations and is as follows: 

 

𝑛 ∙ 𝑋 ≡ n ∙ Y   (𝑚𝑜𝑑 𝑀)       and        𝑋 ≡ Y   (𝑚𝑜𝑑  
𝑀

𝐺𝐶𝐷(𝑛,𝑀)
)   are equivalent (21.6)  
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For the first accumulator, we get the restriction that: 

 

0 ≡ Fnum ∙ k   (𝑚𝑜𝑑 𝐹𝑑𝑒𝑛)        (21.7)  

 

As Fnum and Fden are relatively prime, just divide through by Fnum to get the restriction: 

 

𝑘 = 𝑖 ∙ 𝐹𝑑𝑒𝑛         𝑖 = 1,2,3,4, ..        (21.8)  

 

For the second order modulator, we can do the summation with methods presented in reference 

[2] and this leads to the equation: 

 

0 ≡  
𝑘 ∙ (𝑘 + 1)

2
       (𝑚𝑜𝑑 𝐹𝑑𝑒𝑛) (21.9)  

 

Now k is a multiple of Fden and clearly k+1 is not.  So we can divide this term out.  However, 

if the fractional denominator is even, multiplying by two leads to the additional restriction: 

 

𝑘 ≡ 0         (𝑚𝑜𝑑  2 ∙ 𝐹𝑑𝑒𝑛)     𝑖𝑓 𝐹𝑑𝑒𝑛 𝑖𝑠 𝐸𝑣𝑒𝑛      (21.10)  

 

Looking at the third order modulator we get: 

 

0 ≡  
𝑘 ∙ (𝑘 + 1) ∙ (𝑘 + 2)

6
       (𝑚𝑜𝑑 𝐹𝑑𝑒𝑛) (21.11)  

 

If Fden has no factors of 2 or 3, then we can just multiply through by the 6 and keep the same 

modulus for the equation.  If Fden has a factor of two, we already have a restriction that 

k=2∙i∙Fden from the second order modulator.  If we replace this for the k+2 term, the factor 

of two cancels out and it leads to no further restrictions.  However, if Fden has a factor of 3, 

then multiplying through by 6 will triple the modulus for the equation.  As k would be a 

multiple of Fden, which is a multiple of 3, k+1 and k+2 will not and we can divide these out.   

When all is said and done, we get the additional restriction from the third order modulator 

that: 

 

𝑘 ≡ 0       (𝑚𝑜𝑑 3 ∙ 𝐹𝑑𝑒𝑛)     𝑖𝑓 𝐹𝑑𝑒𝑛 𝑖𝑠 𝑑𝑖𝑣𝑖𝑠𝑖𝑏𝑙𝑒 𝑏𝑦 3 (21.12)  
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The fourth order modulator gives the constraint that: 

 

0 ≡  
𝑘 ∙ (𝑘 + 1) ∙ (𝑘 + 2) ∙ (𝑘 + 3)

24
       (𝑚𝑜𝑑 𝐹𝑑𝑒𝑛) (21.13)  

 

If Fden was to have a factor of 3, then we could write k=3∙i∙Fden and the k+3 term would 

cancel the factor of 3 from the numerator, so this would not add any additional factor of 3.  If 

there was a factor of two, we write k=2∙i∙Fden and the k and k+2 terms would cancel out a 

factor of 4 out of the denominator of 24, but we still have a remaining factor of 2.   So this 

would impose our final constraint that: 

 

𝑘 ≡ 0       (𝑚𝑜𝑑 4 ∙ 𝐹𝑑𝑒𝑛)     𝑖𝑓 𝐹𝑑𝑒𝑛 𝑖𝑠 𝑑𝑖𝑣𝑖𝑠𝑖𝑏𝑙𝑒 𝑏𝑦 2 (21.14)  

 

Conclusion 

These rules are what imply the rules for the occurrences for sub-fractional spurs.  Note that if 

the initial accumulator values were not zero, the exact reasoning could be applied.  Likewise 

if Fnum and Fden were not lowest terms, but the initial state was zero, these conditions would 

hold by very similar reasoning.  This reasoning would even work for a nonzero seed and Fnum 

and Fden not lowest terms provided that the initial states were all a multiple of the greatest 

common multiple of Fnum and Fden.  If the seed was not a multiple of the greatest common 

multiple, then it would create additional sub-fractional spurs.  However, this is typically not 

done intentionally unless it is used as some form of dithering.  
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Appendix B  Modulator Sequence Example 

Consider a fraction of 3/10 with the 4th order modulator to illustrate the accumulators and 

output sequence for the delta sigma modulator. 

 

Accumulators and Quantizers Outputs and Output Filters 

A1 Q1 A2 Q2 A3 Q3 A4 Q4 Y1 Y2 
Y2∙ 

(1−1/z) 
Y3 

Y3∙ 
(1−1/z)2 

Y4 
Y4∙ 

(1−1/z)3 
[SEQUENCE] 

3 −3 3 −3 3 −3 3 −3 0 0 0 0 0 0 0 0 

6 −6 9 −9 12 −2 5 −5 0 0 0 1 1 0 0 1 

9 −9 18 −8 10 0 5 −5 0 1 1 1 −1 0 0 0 

12 −2 10 0 0 0 5 −5 1 1 0 0 −1 0 0 0 

5 −5 5 −5 5 −5 10 0 0 0 −1 0 1 1 1 1 

8 −8 13 −3 8 −8 8 −8 0 1 1 0 0 0 −3 −2 

11 −1 4 −4 12 −2 10 0 1 0 −1 1 1 1 4 5 

4 −4 8 −8 10 0 0 0 0 0 0 1 −1 0 −4 −5 

7 −7 15 −5 5 −5 5 −5 0 1 1 0 −1 0 3 3 

10 0 5 −5 10 0 5 −5 1 0 −1 1 2 0 −1 1 

3 −3 8 −8 8 −8 13 −3 0 0 0 0 −2 1 1 −1 

6 −6 14 −4 12 −2 5 −5 0 1 1 1 2 0 −3 0 

9 −9 13 −3 5 −5 10 0 0 1 0 0 −2 1 4 2 

12 −2 5 −5 10 0 0 0 1 0 −1 1 2 0 −4 −2 

5 −5 10 0 0 0 0 0 0 1 1 0 −2 0 3 2 

8 −8 8 −8 8 −8 8 −8 0 0 −1 0 1 0 −1 −1 

11 −1 9 −9 17 −7 15 −5 1 0 0 1 1 1 1 3 

4 −4 13 −3 10 0 5 −5 0 1 1 1 −1 0 −3 −3 

7 −7 10 0 0 0 5 −5 0 1 0 0 −1 0 3 2 

10 0 0 0 0 0 5 −5 1 0 −1 0 1 0 −1 0 

3 −3 3 −3 3 −3 8 −8 0 0 0 0 0 0 0 0 

6 −6 9 −9 12 −2 10 0 0 0 0 1 1 1 1 2 

9 −9 18 −8 10 0 0 0 0 1 1 1 −1 0 −3 −3 

12 −2 10 0 0 0 0 0 1 1 0 0 −1 0 3 3 
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Chapter 22      Oscillator Phase Noise 

 

Introduction 

The phased locked loop uses an oscillator on both the input reference and for the VCO.  

Oscillator phase noise improves at farther offsets from the carrier and can be generally divided 

into three regions:  1/f3, 1/f2, and floor.  The 1/f3 region has phase noise that improves with 

offset at 30 dB/decade, the 1/f2 region has phase noise that improves as 20 dB/decade, and the 

floor region is flat.  This chapter discusses the phase noise of oscillators in these regions and 

presents modeling methods. 

 

Theory of Oscillator Noise 

Simplified Noise Model 

A common model for VCO phase noise models just the 1/f2 region.  A traditional equation 

that describes phase noise in this region is called Lesson’s Equation and is given below [1]: 

 

𝐿(𝑓) = 10 ∙ 𝑙𝑜𝑔 (
1

2
∙
𝐹 ∙ 𝑘 ∙ 𝑇

𝑃
∙ (

𝑓𝑉𝐶𝑂
2 ∙ 𝑄𝐿 ∙ 𝑓

)
2

) (22.1)  

 

L(f) = Phase noise in dBc/Hz 

f = Offset Frequency where phase noise is measured 

F = Noise Figure of Active Device 

k = Boltzman’s constant    = 1.380658 x 10-23  J/K 

T = Temperature in Kelvin 

P = RF Power at input of active device 

fVCO = Operating Frequency of the VCO 

QL = Loaded Quality Factor of the inductor = XL  /  RL  

 

The model predicts that lower noise figure and higher output power are theoretically better on 

a dB for dB basis and phase noise at lower temperatures is theoretically better.   If all other 

factors were held constant, then the phase noise would theoretically degrade 6 dB if the VCO 

frequency was doubled. 

QL is a critical parameter and discussed much when the objective is to minimize the VCO 

phase noise.  This is measured at the operating frequency and defined as the real ratio of the 

reactance of the inductor divided by its resistance.  Ideally, the resistance of the inductor 

should be zero and QL should be infinite, but this is never the case since there will always be 

some resistance in the inductor.  Just as friction stops the motion of the pendulum, the 

resistance in the inductor damps the oscillation of the tank circuit.  A considerable amount of 

time spent optimizing phase noise in VCOs involves trying to get as high of a QL factor as 

possible.  The Q factor of the inductor goes down considerably as it is loaded, so one must be 

sure to use the loaded Q for Lesson’s Equation.    
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Full Phase Noise Model 

The full phase noise model also accounts for the noise contribution due to the resistance of 

the varactor diode in the 1/f2 region as well as adding a 1/f3 region and flat region.  The formula 

below is an expanded version of Lesson’s equation that shows the phase noise in all three 

regions [1]. 

 

𝐿(𝑓) = 10 ∙ 𝑙𝑜𝑔 (
1

2
[(

𝑓𝑉𝐶𝑂
2 ∙ 𝑄𝐿 ∙ 𝑓

)
2

+ 1] ∙ [

𝑓1
𝑓3⁄

𝑓
+ 1] ∙ [

𝐹 ∙ 𝑘 ∙ 𝑇

𝑃
] +

2 ∙ 𝑘 ∙ 𝑇 ∙ 𝑅𝑣𝑎𝑟 ∙ 𝐾𝑉𝐶𝑂
2

𝑓2
) (22.2)  

 

3/1 f
f  = 1 / f 3  noise (flicker noise) corner frequency 

Rvar  = Noise resistance of the varactor diode 

 

The noise in the 1/f3 and 1/f2   regions degrades at higher output frequencies and lower QL 

factors in a 20 log sense.  In other words, if the output frequency is doubled, the noise in these 

regions degrades 6 dB.  Also, in the 1/f2 region, there is an additional term that contains KVCO.  

What this implies is that the noise resistance of the varactor diode becomes relevant at higher 

VCO gains.  Making the VCO gain smaller will improve the phase noise, but at some point, 

the other term becomes dominant, and there are diminishing returns.  

 

Practical Modeling of Oscillator Noise 

A Simple Method for Modeling Oscillator Noise 

The full phase model can be approximated in three different regions and can be re-stated as: 

 

𝐿(𝑓) = 10 ∙ 𝑙𝑜𝑔 (𝑁3 ∙ (
𝑓𝑑𝑒𝑓𝑎𝑢𝑙𝑡

𝑓
)

3

+ 𝑁2 ∙ (
𝑓𝑑𝑒𝑓𝑎𝑢𝑙𝑡

𝑓
)

2

+ 𝑁0) (22.3)  

 

𝑁3 =  
1

𝑓3
 Noise Coefficient =  

𝐹 ∙ 𝑘 ∙ 𝑇

𝑃
∙

𝑓1
𝑓3⁄
∙ 𝑓𝑉𝐶𝑂

2

8 ∙ 𝑄𝐿
2 ∙ 𝑓𝑑𝑒𝑓𝑎𝑢𝑙𝑡

3 (22.4)  

𝑁2 =  
1

𝑓2
 Noise Coefficient =  

𝐹 ∙ 𝑘 ∙ 𝑇

𝑃
∙

𝑓𝑉𝐶𝑂
2

8 ∙ 𝑄𝐿
2 ∙ 𝑓𝑑𝑒𝑓𝑎𝑢𝑙𝑡

2 +
2 ∙ 𝑘 ∙ 𝑇 ∙ 𝑅𝑉𝑎𝑟

𝑓𝑑𝑒𝑓𝑎𝑢𝑙𝑡
2  (22.5)  

𝑁0 = 𝑉𝐶𝑂 𝑁𝑜𝑖𝑠𝑒 𝐹𝑙𝑜𝑜𝑟 =  
𝐹 ∙ 𝑘 ∙ 𝑇

𝑃
 (22.6)  

𝑓𝑑𝑒𝑓𝑎𝑢𝑙𝑡 = 𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑 𝑂𝑓𝑓𝑠𝑒𝑡 𝑓𝑜𝑟 𝑃ℎ𝑎𝑠𝑒 𝑁𝑜𝑖𝑠𝑒 (22.7)  

  



Oscillator Phase Noise  

 

187 

 

One simple way to model a VCO is to measure it and try to fit a model to all three regions of 

the VCO.   The tricky part is that it is very possible that noise sources from more than one 

region are contributing to noise at a particular point.  For this strategy, one measures the phase 

noise at three strategic points.  The first one should be targeting the 1/f3 region, the second 

one should be targeting the 1/f2  region, and the third one should be far out in the flat region. 

 

Application of Model to Measured Phase Noise 

Consider that the following data is taken at a frequency of fVCO and modeled. 

 

Phase Noise 
Phase Noise 

Offset 
Region Targeted Typical Offset 

10/3103 Pp =  f3 1/f3 1 kHz 
10/2102 Pp =  f2 1/f2 100 kHz 
10/0100 Pp =  f0 Flat 40 MHz 

Table 22.1 Phase Noise Measurements 

 

It will save a lot of work in the future if the units are converted to scalar units, as they are done 

in the table.  The first thing to do is check the slope between P3 and P2.  This slope should be 

less than 30, but more than 20.  If it is more than 30, then this noise model will not work close 

in.  If it is within measurement error of 30, then both points are on the 1/f3 slope.  If it is less 

than 20, then none of the points are on the 1/f3 slope. 

 

𝑃2 − 𝑃3

𝑙𝑜𝑔 (
𝑓2

𝑓3⁄ )
 

(22.8)  

 

The second thing to do is to check the slope between P2 and P0.  This slope should be less 

than 20, but more than 0.  If it is more than 20, then one of these points is on the 1/f3 slope.  If 

it is equal to 20, then both points are on the 1/f2 slope.   If it is zero, clearly both measurements 

are on the floor. 

 

𝑃2 − 𝑃0

𝑙𝑜𝑔 (
𝑓2

𝑓0⁄ )
 

(22.9)  
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Once it is known what slope the points are on, then this leads to a system of at most 3 equations 

and unknowns.  The equations are as follows: 

 

𝑝3 = 𝑛3 ∙ (
𝑓𝑑𝑒𝑓𝑎𝑢𝑙𝑡

𝑓3
)

3

+ n2 ∙ (
𝑓𝑑𝑒𝑓𝑎𝑢𝑙𝑡

𝑓3
)

2

+ n0 (22.10)  

 

𝑝2 = 𝑛3 ∙ (
𝑓𝑑𝑒𝑓𝑎𝑢𝑙𝑡

𝑓2
)

3

+ n2 ∙ (
𝑓𝑑𝑒𝑓𝑎𝑢𝑙𝑡

𝑓2
)

2

+ n0 (22.11)  

 

𝑝0 = 𝑛3 ∙ (
𝑓𝑑𝑒𝑓𝑎𝑢𝑙𝑡

𝑓0
)

3

+ n2 ∙ (
𝑓𝑑𝑒𝑓𝑎𝑢𝑙𝑡

𝑓0
)

2

+ n0 (22.12)  

 

Now it may be the case that one or more of these equations is redundant and can be ignored.  

In the case that an equation is ignored, then one of the noise coefficients will be zero, and the 

work will be simplified.  Complex values can occur for n0, n2, or n3 if the VCO being 

modeled does not fit the assumptions of the model.   

A simplifying assumption that can be applied is that the noise floor and the 1/f3 noise will not 

be acting on the same point.  Furthermore, it seems to reduce the occurrences of getting 

complex values for n3, n2, and n0.  In the case of point n2, one doesn’t know which one of 

these two sources is acting there, so all terms have to be left in.  Using this assumption, this 

can be reduced to the following matrix equation that has the following solution: 

 

[
 
 
 
 
 
 
 
 
𝑛3

𝑛2

𝑛0
]
 
 
 
 
 
 
 
 

=

[
 
 
 
 
 
 
 (
𝑓𝑑𝑒𝑓𝑎𝑢𝑙𝑡

𝑓3
)

3

(
𝑓𝑑𝑒𝑓𝑎𝑢𝑙𝑡

𝑓3
)

2

0

(
𝑓𝑑𝑒𝑓𝑎𝑢𝑙𝑡

𝑓2
)

3

(
𝑓𝑑𝑒𝑓𝑎𝑢𝑙𝑡

𝑓2
)

2

1

0 (
𝑓𝑑𝑒𝑓𝑎𝑢𝑙𝑡

𝑓0
)

2

1
]
 
 
 
 
 
 
 
−1

∙

[
 
 
 
 
 
 
 
 
𝑝3

𝑝2

𝑝0
]
 
 
 
 
 
 
 
 

 (22.13)  
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𝑁3(𝑓) = 10 ∙ 𝑙𝑜𝑔

[
 
 
 
 𝑛3 ⋅ (

𝑓𝑑𝑒𝑓𝑎𝑢𝑙𝑡
𝑓

)
3

10

]
 
 
 
 

 (22.14)  

 

 

𝑁2(𝑓) = 10 ∙ 𝑙𝑜𝑔

[
 
 
 
 𝑛2 ⋅ (

𝑓𝑑𝑒𝑓𝑎𝑢𝑙𝑡
𝑓

)
2

10

]
 
 
 
 

 (22.15)  

 

 

𝑁0 = 10 ∙ 𝑙𝑜𝑔 [
𝑛0

10
] (22.16)  

 

 

The 1/f3 to 1/f2 corner point is where these two noise sources contribute equally and can be 

calculated as follows: 

 

𝑓𝐶𝑜𝑟𝑛𝑒𝑟3 = 𝑓𝑑𝑒𝑓𝑎𝑢𝑙𝑡 ∙
𝑛3

𝑛2
 (22.17)  

 

 

The 1/f2 to phase noise floor corner point, which is where these two noise sources contribute 

equally, can be calculated as follows: 

 

𝑓𝐶𝑜𝑟𝑛𝑒𝑟𝐹 = 𝑓𝑑𝑒𝑓𝑎𝑢𝑙𝑡 ∙ √
𝑛2

𝑛0
 (22.18)  

 

This model gives an excellent match to measured results.   It was applied to a VCO at 2.7 

GHz output frequency using the values of N3 = −157 dBc/Hz, N2 = −147 dBc/Hz, and N0 = 

−164 dBc/Hz and the result is Figure 22.1 . 
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Figure 22.1  Application of Oscillator Noise to Measured Data 

 

 

 

Conclusion 

The phase noise of oscillators, whether it is for a crystal or VCO, typically falls into one of 

three categories.  The 1/f3 noise changes 30 dB/decade, the 1/f2 changes 20 dB/decade, and 

the noise floor is flat.  By understanding oscillator noise in this way, metrics can be created 

by normalizing these noise metrics to carrier frequency and offset and the noise can be 

analyzed and modeled better. 
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Chapter 23       Phase Noise of Input Path, Charge Pump, and Dividers 

 

Introduction 

The phase noise of the input path, N divider, and charge pump may all be independent, but 

they may all be grouped together as their noise behaves in a similar way and is also shaped in 

a similar way by the PLL loop.   This chapter studies these noise sources under the assumption 

that the input reference is noiseless and the loop bandwidth is infinite.  Once this is understood, 

then the appropriate shaping due the transfer function can be applied. 

 

1

N

1

R
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N Divider

R Divider

fPD
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Input 
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Figure 23.1  Noise Blocks in the PLL 

 

The noise transfer functions for these blocks with an infinite loop bandwidth would be as 

follows: 

 

Source Transfer Function 

Input Buffer 20 ∙ 𝑙𝑜𝑔(𝑁) + 20 ∙ 𝑙𝑜𝑔(𝑀 𝑅⁄ ) 

Input Multiplier 20 ∙ 𝑙𝑜𝑔(𝑁) + 20 ∙ 𝑙𝑜𝑔(1 𝑅⁄ ) 

R Divider 20 ∙ 𝑙𝑜𝑔(𝑁) 

N Divider 20 ∙ 𝑙𝑜𝑔(𝑁) 

Phase Detector/Charge Pump 20 ∙ 𝑙𝑜𝑔(𝑁) − 20 ∙ 𝑙𝑜𝑔(𝐾𝑃𝐷) 

Table 23.1 Infinite bandwidth transfer functions for various parts of the PLL 
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Understanding Correlated and Uncorrelated Error at the Charge Pump Output 

There are several blocks in the PLL that can contribute to the noise, but in the final analysis, 

the noise of all these blocks can be thought of as what noise they contribute at the charge 

pump output, so the first step is to focus on this. 

In the locked condition, the charge pump puts out a pattern with alternating pulses of current 

as shown in Figure 23.2 .  The width of these pulses translates to phase detector spurs that 

have already been discussed in a previous chapter.   
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Figure 23.2  Ideal vs. Actual Charge Pump Output 

 

Figure 23.4 shows that it is not the width, but the error between the ideal and actual output of 

the charge pump that determines the phase noise.  If the width of one pulse is related to the 

width of an adjacent pulse, then this noise is said to be correlated.   On the other hand, if it is 

completely independent, then it is said to be uncorrelated.  These error pulses are typically a 

combination of correlated and uncorrelated noise, which translates to the flicker and flat noise 

of the PLL.  The PLL noise of the charge pump and counters typically can be modeled as a 

1/f noise and a flat noise.  The 1/f noise is typically correlated and the flat noise is typically 

uncorrelated.   
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Figure 23.3  Error Translated to the Charge Pump Output 

 

Defining PLL Flat and Flicker (1/f) Noise 

For earlier integer PLLs and lower phase detector frequencies, it was sufficient to model PLL 

noise as just flat white noise.  However, with the coming of higher phase detector frequencies 

the flicker noise of the PLL has become a much larger consideration.  The flicker noise has a 

characteristic of decreasing 10 dB/decade and the flat noise tends to show up lower offset 

frequencies if the reference is sufficiently clean and if the phase detector rate is sufficiently 

high.  The total PLL noise is the resultant of the flat and 1/f noise as shown in Figure 23.4 .  

At offsets below 1 kHz, there is also some contribution from the input reference. 

 

  

Figure 23.4  Modeled PLL Noise vs. Measurement for the LMX2541 
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Figure 23.4 shows the phase noise of the Texas Instruments LMX2541 delta sigma PLL 

measured at 3.74 GHz output frequency and a 100 MHz phase detector frequency.   The loop 

bandwidth for this measurement was around 500 kHz, so this phase noise is all in-band.  Note 

how the 1/f and flat noise sum together to add to the total noise. 

   

Properties of PLL Flat Noise 

Improves as 10∙log(fPD) for Fixed VCO Frequency 

The flat noise improves with higher phase detector frequencies.  The reason is that current 

error pulses for the flat noise are uncorrelated, which means that their noise power adds in an 

RMS sense.  Consider the impact of increasing the phase detector by a factor two while 

keeping the VCO frequency the same.  The N divider is therefore half and this corresponds to 

a 6 dB improvement, but the phase detector noise increases by a factor of square root of two 

which is 3 dB.  So the net improvement is only 3 dB.   

 

Degrades as 10∙log(N) with Higher N Divider Values and Fixed VCO Frequency 

Although increasing the N divider by a factor of K increases the noise multiplication by 

20∙log(K), it also decreases the phase detector noise by a factor of 10∙log(K), so the net 

degradation is 10∙log(K).  Another way of stating this rule is that doubling the phase detector 

improves the PLL flat noise by a factor of 3 dB.    

 

Increases with VCO Frequency 

The PLL flat noise typically increases as 20∙log(fVCO) with the VCO frequency provided that 

the phase detector frequency is the same.  This is due to the larger N multiplication value. 

Unlike the flicker noise, it does change if the phase detector frequency is simultaneously 

changed.   

 

Sometimes Degraded by Input Multipliers 

When PLL input multipliers are used and the phase detector frequency is not changed, the 

PLL flat noise is typically degraded and often the flicker noise degradation is less noticeable.  

One way to measure this is to engage the input multiplier and then increase the R divider by 

the same factor so as to keep the same frequency.  This is typically not good practice for 

optimizing phase noise, but a good diagnostic method. 
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Properties of PLL Flicker Noise 

Has 10 dB/decade Slope and How to Distinguish from Input Reference Noise 

For test purposes, the 1/f noise is typically measured by choosing a high PLL phase detector 

frequency, wide loop bandwidth, and using an ultra-low noise crystal oscillator of fixed 

frequency.     Flicker noise that has a characteristic of decreasing as 10 dB/decade with the 

offset frequency.   This property is very helpful in distinguishing the 1/f noise of the PLL from 

the input reference noise because the input reference noise typically decreases at a much faster 

rate (closer to 20/dB/decade).  It is very often the case when using signal generators, even 

those claiming to be low noise, that the signal generator noise is higher than the PLL 1/f noise.    

 

Independent of Phase Detector Frequency 

Perhaps the most surprising property is that the flicker noise does not improve with higher 

phase detector frequencies.  A way to reason this is to consider increasing the phase detector 

by a factor of M while keeping the VCO frequency the same.  Indeed, the N divider is less by 

a factor of M and there is a 20∙log(M) improvement in this aspect.  However, since the noise 

is correlated, there is also a 20∙log(M) increase in the noise itself before the multiplication 

because there are M times more pulses.  The net effect is the 1/f noise is independent of phase 

detector frequency as shown in this example from the Texas Instruments LMX2485 PLL. 

 

 

Figure 23.5  Independence of 1/f noise and Phase Detector Frequency 
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Increases with VCO Frequency 

The flicker noise typically increases as 20∙log(fVCO) with the VCO frequency.  If the VCO 

frequency is increased by virtue of a higher phase detector frequency and the same N divider 

value, it would be higher due to higher noise of the phase detector itself.  If the phase detector 

frequency is held constant and the N divider is increased, the flicker noise increases by virtue 

of the larger N value.  In any case, the flicker noise increases with the higher VCO frequency. 

 

At Some Very Low Offset the Flicker Noise Can No Longer Increase 

If one considers the 10∙log(Offset) relationship for the flicker noise and calculates the noise 

power, then theoretically this would be infinite if one goes down to DC.  However, this noise 

must eventually flatten out at sufficiently low offsets, but this point is very low, on the order 

of less than 1 Hz.  An over-simplified but useful way to view this is that any noise below 1 

Hz is considered to be the carrier. 

 

Modeling of the PLL Noise 

Modeling PLL Flat Noise 

The PLL flat noise increases as 20∙log(fPD) and 10∙log(fPD).  It therefore makes sense to derive 

a metric that does not vary with these parameters.  This metric has been called the PLL figure 

of merit and also the 1 Hz Normalized PLL noise floor (PN1Hz).   This metric is device 

specific and always modeled with the highest charge pump current of the device.  From this 

metric, the PLL flat noise can be modeled as follows: 

 

𝑃𝐿𝐿𝑛𝑜𝑖𝑠𝑒𝑓𝑙𝑎𝑡 = PN1Hz + 10 ∙ log (
𝑓𝑃𝐷
1𝐻𝑧

) + 20 ∙ log(𝑁) (23.1)  

 

 

Modeling of the PLL 1/f Noise  

For frequencies less than some offset, the 1/f noise needs to be taken into consideration. In 

general, this noise decreases by 10 dB/decade and a simple way to characterize this is to 

normalize it to 10 kHz offset frequency and a 1 GHz PLL output frequency, PN10kHz.  

 

𝑃𝐿𝐿𝑛𝑜𝑖𝑠𝑒1/𝑓(𝑓𝑂𝑈𝑇 , 𝑜𝑓𝑓𝑠𝑒𝑡) = PN10kHz + 20 ∙ log |
𝑓𝑂𝑈𝑇
1𝐺𝐻𝑧

| − 10 ∙ log |
𝑜𝑓𝑓𝑠𝑒𝑡

10𝑘𝐻𝑧
| (23.2)  
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Other Interpretations of PLL Flat and Flicker Noise 

1/f Corner Frequency  

One common frequency of interest is the offset where the flat and flicker noise cross, often 

called the corner frequency.  This frequency be can easily calculated, but it is not constant and 

will move with the phase detector frequency.  At this offset, the PLL flat noise will be 

degraded by 3 dB.  At twice this offset, the PLL flat noise will be degraded by 1.8 dB.  At 

four times this offset, the PLL flat noise will be degraded by about 1 dB.  This crossover 

frequency can be calculated by equating the PLL flat noise to the PLL 1/f noise and solving 

for the offset.   

 

𝐶𝑜𝑟𝑛𝑒𝑟 𝐹𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 =  𝑓𝑃𝐷 ∙ 10
−14 ∙ 10(𝑃𝑁10𝑘𝐻𝑧−𝑃𝑁1𝐻𝑧)/10 (23.3)  

 

 

Another Interpretation of 1/f  Noise −  fPDKnee 

If one considers a fixed offset frequency and PLL output frequency and increases the phase 

detector frequency, the phase noise seems to improve to a point and then reach diminishing 

returns.  The fPDKnee frequency can be used to describe the point where raising the phase 

detector from this value to infinity would cause a 3 dB theoretical improvement in phase noise.  

This can be calculated from the normalized flicker noise and PLL figure of merit as follows: 

 

𝑃𝑁10𝑘𝐻𝑧 + 10 ∙ log |
10𝑘𝐻𝑧

𝑂𝑓𝑓𝑠𝑒𝑡
| = PN1Hz + 10 ∙ log |

𝑓𝑃𝐷𝐾𝑛𝑒𝑒

1𝐻𝑧
| + 20 ∙ log |

1 𝐺𝐻𝑧

𝑓𝑃𝐷𝐾𝑛𝑒𝑒
| (23.4)  

 

Factors Impacting 1/f Noise and PLL Flat Noise 

Impact of Charge Pump Gain 

If the PLL noise is dominated by the charge pump, then increasing the charge pump gain can 

sometimes improve it.  On the other hand, if the charge pump gain has no impact on the PLL 

noise, then this typically implies that it is dominated by the input path or dividers.  The 

theoretical reasoning for this is that the charge pump noise is theoretically divided by the 

charge pump gain.  The key caveat for this is that increasing the charge pump gain typically 

increases the noise of the charge pump itself, so it really can depend how the charge pump 

gain is increased. If the charge pump gain increase is implemented by simple multiplication, 

then this typically does not improve the noise because this multiplies the noise by the same 

amount.   In other charge pumps, the higher current is implemented by adding more current 

sources in parallel.  If this is the case, then the noise is uncorrelated and this theoretically leads 

to a three dB/decade increase for every doubling of the charge pump gain.   
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Figure 23.6  Impact of Charge Pump Current on Flicker Noise 

 

Figure 23.6 shows the impact of changing the charge pump gain of the LMX2485 PLL while 

keeping the phase detector frequency constant at 50 MHz using the same setup that was used 

as was used in Figure 23.5 .  As the charge pump is the only noise source that has its phase 

noise theoretically divided by the charge pump gain, one can conclude that the charge pump 

itself is the dominant source of the 1/f noise as this is the only contributor that has phase noise 

that is divided by the charge pump gain.  It is generally best to use the highest charge pump 

gain for the best phase noise unless the loop filter capacitors become undesirably large, the 

higher current is needed for Fastlock or to compensate for VCO gain differences, or a point 

of diminishing returns for phase noise has been achieved.    

 

Modeling the Impact of Charge Pump Gain on PLL Phase Noise 

Depending on the charge pump architecture, increasing the charge pump can help to a point 

until diminishing returns is reached, which can be described as KPDKnee.  If the charge pump 

current has no impact on phase noise, then this term is zero.  Otherwise, it can be thought of 

the current that theoretically has phase noise worse than an infinite charge pump current.  As 

the highest charge pump current (KPDMax) almost always has the best PLL noise, the noise 

at other charge pump currents can be modeled as follows:  

 

𝑃𝐿𝐿𝑁𝑜𝑖𝑠𝑒(𝐾𝑃𝐷) = PLL_Noise(𝐾𝑃𝐷𝑀𝑎𝑥) + 10 ∙ log |
𝐾𝑃𝐷𝑀𝑎𝑥

𝐾𝑃𝐷
∙

𝐾𝑃𝐷 +𝐾𝑃𝐷𝐾𝑛𝑒𝑒

𝐾𝑃𝐷𝑀𝑎𝑥 + 𝐾𝑃𝐷𝐾𝑛𝑒𝑒
| (23.5)  
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Crosstalk in Dual PLLs 

In the dual PLL, it has been found that the optimal phase noise performance is when the other 

side of the PLL is unused, powered down, and with no VCO connected. Table 23.2 assumes 

that the other PLL is powered down with its corresponding VCO running.  If the actual case 

is that the other PLL is powered down with no VCO running, this typically results in about a 

2 dB improvement in phase noise.  If the other PLL is powered up with the VCO running, this 

typically results in a 1 to 2 dB degradation from what the table predicts.   

 

Impact of Input Reference Slew Rate on PLL Phase Noise 

PLL phase noise often improves with higher input slew rates if it is dominated by the input 

path.  The reason is that the higher slew rates give higher immunity to the noise of the input 

buffer and R divider.  If the R divider is the dominant cause of the PLL noise, then improving 

the slew rate by a factor of two will improve the flicker noise by about 6 dB.  However, at 

some point, increasing the slew rate no longer improves the noise.   The Texas Instruments 

LMX2541 datasheet has curves that show this.  For the purposes of modeling the PLL noise, 

it is typically assumed that the slew rate is very high and not an issue.  

Just as a high slew rate is good for phase noise, a poor slew rate can be bad for dividers.  When 

the input signal is of low frequency or low amplitude, this leads to a lower slew rate.   This 

lower slew rate lowers the noise immunity of the counters and can cause the PLL phase noise 

to degrade.     

 

Accounting for Input Multipliers in the Input Path 

Some PLLs have doublers or multipliers in the input path and the natural question is to wonder 

how to model this phase noise.   For instance, if the input doubler is very low noise, there are 

some cases where engaging this can actually be used to improve the 1/f noise of the PLL;  this 

is an indication that this flicker noise is due to the input path and not the charge pump.  For 

other input path frequency multipliers, they can add noise and the best way to model this is as 

degradation in the figure of merit of the PLL.   

 

Spectrum Analyzer Correction Factors 

Most modern spectrum analyzers account for correction factors for measuring phase noise.  

However, some older ones require the user to subtract away the resolution bandwidth (RB) of 

the instrument as follows: 

𝑇𝑟𝑢𝑒 𝑃ℎ𝑎𝑠𝑒 𝑁𝑜𝑖𝑠𝑒 =  𝑀𝑒𝑎𝑠𝑢𝑟𝑒𝑑 𝑃ℎ𝑎𝑠𝑒 𝑁𝑜𝑖𝑠𝑒 + 10 ∙ 𝑙𝑜𝑔 (
𝑅𝐵

1𝐻𝑧
) (23.6)  

 

However, this method is not entirely correct.  Spectrum analyzers have a correction factor that 

is added to the phase noise to account for the log amplifier in the device and minor errors 

caused due to the difference between the noise bandwidth and the 3 dB bandwidth.  This 

correction factor is in the order of about 2.5 dB.  Many spectrum analyzers have a function 
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called “Mark Noise”, which does account for the spectrum analyzer correction factors.  The 

part-specific numbers for phase noise derived in this chapter do not account for the correction 

factor of the spectrum analyzer, and are therefore optimistic by about 2 dB.  Numbers reported 

in this chapter account for spectrum analyzer correction factors. 

 

Accounting for Fractional N Dividers 

A natural question to ask is how fractional N PLL noise differs from integer PLL noise.  The 

answer to this is it depends on the nature of the noise.   The three most common ways this can 

impact the PLL phase noise and the way it is modeled are:  (1)  PLL Noise is not degraded at 

all,  (2) PLL Figure of Merit is degraded, or (3) Fractional noise is created that is independent 

of other PLL noise.   The specific scenario that applies to each case can be specific to the 

fractional PLL used along with the way it is configured, and these three scenarios are 

discussed in the following sections. 

 

Case 1:    Fractional Division does not Degrade PLL Noise 

In some cases, the use of a fractional N value does not degrade the phase noise at all.   This 

can often be the case when the fraction is not well randomized and dithering is disabled.  For 

instance, if one uses a fraction of 3/10 with a first order modulator, often there will be no 

degradation in the phase noise at all, just fractional spurs.   For some fractional PLLs that have 

a fixed fractional denominator, sometimes this forces a simple fraction to be well-randomized, 

which is harmful to the PLL noise.    

 

Case 2:    Fractional Division Degrades the PLL Figure of Merit 

There are many fractional PLLs that specify the phase noise figure of merit for both integer 

and fractional mode.   In these cases, the close-in fractional noise will vary as a function of 

the phase detector frequency.   Hypothetically, this can be thought of as the noise of the N 

divider being degraded by the fractional noise, or perhaps it could be due to the addition of 

the fractional compensation circuitry. 

 

Case 3:    Fractional Division Creates a New Independent Noise Floor  

In the cases that the fraction is well-randomized, the fractional PLL will actually create a 

family of many fractional spurs that are very close together that appear to be phase noise on a 

spectrum analyzer or phase noise analyzer.  This close-in phase noise is impacted by the 

modulator order, but does not change much with phase detector frequency or VCO frequency. 

Furthermore, at farther out frequencies that are closer to the phase detector frequency, there 

is a large amount of phase noise, but this can be filtered out by the loop filter.    The following 

example shows a LMX2485 PLL with a 10 MHz phase detector rate and 237 kHz 2nd order 

loop filter.  This was done with a fraction of 1/4194303 with strong dithering.  The roll-off of 

the loop filter was subtracted away from the raw measurement to find the unshaped PLL.     
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Figure 23.7  Measured Delta Sigma Modulator Noise 

 

Comparing the measurements to the theoretical data, there is excellent agreement except at 

very low frequencies.  At these low frequencies, there was also a flat noise floor.  In general, 

experiments show that there is no consistent trend for this noise for a particular modulator 

order, phase detector frequency, or dithering mode.  In this case as shown in Figure 23.7 , the 

quantization noise was well randomized and the assumption that it is a uniformly distributed 

random variable between 0 and 1 holds.  This is why there is such nice agreement.  The 

mathematics behind the modeling this noise is given in the appendix. 

 

Phase Noise Constants for Various Texas Instruments PLLs 

Table 23.2  gives typical phase noise metrics for various Texas Instruments PLLs.  These 

measurements were taken with a wide loop bandwidth and an ultra-clean input source to 

ensure that this was due to the device, not the input or VCO.  To simplify the table, devices 

within a family are considered to have the same metrics.  For instance, the LMX2485E, 

LMX2485Q-Q1, LMX2485, LMX2486, LMX2487, and LMX2487E are all members of the 

LMX2485 family.  For dual PLLs, there is a side column to distinguish both sides.  KPDMax 

and KPDKnee can be used to adjust the figure of merit (FOM) and normalized 1/f metric 

(PN10kHz) using (23.5).   For fractional devices, the strongly dithered phase noise is given 

for a 2nd, 3rd, and 4th order modulator.  It is important to understand that all of these fractional 

devices allow dithering to be disabled and can also be used with simple fractions.  In this case, 

there is no fractional noise added, just fractional spurs.   
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PLL Integer Noise Metrics 
Fractional Noise 

Metrics 

Device Side 
KPDMax 

(mA) 

KPDKnee 

(mA) 

FOM 

(dBc/Hz) 

PN10kHz 

(dBc/Hz) 

2nd 

Order 

3rd 

Order 

4th 

Order 

LMX2306 

Family 
Main PLL 1 1.0 −208.0 −86.1 n/a n/a n/a 

LMX2430 

Family 

RF PLL 4 0.0 −217.8 −99.6 
n/a n/a n/a 

IF PLL 4 0.0 −217.8 −99.6 

LMX2470 

Family 

RF PLL 4 0.0 −210.0 −99.6 
n/a n/a n/a 

IF PLL 4 0.0 −209.0 −99.6 

LMX2485 

Family 

RF PLL 1.6 0.4 −215.8 −104.6 −100.0 −95.0 −90.0 

IF PLL 1.6 0.0 −210.0 −107.5 n/a n/a n/a 

LMX2491/92 Main PLL 3.1 1.2 −227.0 −120.0 −100.0 −95.0 −90.0 

LMX2531 

Family 
Main PLL 1.6 2.0 −212.0 −104.0 −100.0 −95.0 −90.0 

LMX2541 

Family 
Main PLL 3.1 0.4 −225.9 −124.9 −100.0 −95.0 −90.0 

LMX2571 Main PLL 1.25 0.1 −231.0 −124.0 none −99.0 −96.0 

LMX2581 Main PLL 3.1 0.4 −230.8 −122.6 −107.1 −103.8 −97.7 

LMX2582/92 Main PLL 4.8 0.5 −231.0 −126.0 none −99.0 −99.0 

Table 23.2 PLL Noise Metrics for Various Texas Instruments PLLs 

 

Conclusion 

This chapter has investigated the causes of PLL phase noise and has provided a somewhat 

accurate model of how to predict it. Within the loop bandwidth, the PLL phase detector is 

typically the dominant noise source, and outside the loop bandwidth, the VCO noise is often 

the dominant noise source.  It is reasonable to expect a ± 0.5 dB measurement error when 

measuring phase noise.  Phase noise can vary from board to board and part to part, but 

typically this variation is in the order of a few dB.   
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Appendix 

Theoretical Delta Sigma PLL Phase Noise 
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Figure 23.8  Third Order Delta Sigma Modulator 

 

Figure 23.8 shows that the quantization noise from all stages except for the last is canceled 

out.  Also, whether the quantization noise is positive or negative makes no impact on the 

spectrum.   That being said, the output of an nth order delta sigma modulator is therefore: 

 

𝑌(𝑧) =  
𝐹𝑛𝑢𝑚

𝐹𝑑𝑒𝑛
+ ℎ(𝑧) ∙ (1 − 𝑧−1)𝑛 ∙ 𝑄𝑛(z) (23.7)  

 

Reference [4] discusses that there are additional factors that arise because the N counter is not 

constant and the phase detector is actually only on at discrete times.  Comparing this result to 

those in reference [4] show that this unexplained factor of h(z) is as follows: 

 

ℎ(𝑧) =  2𝜋 ∙
𝑧−1

1 − 𝑧−1
∙
1

𝑓𝑃𝐷
 (23.8)  
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What is of interest is the output spectrum of this delta sigma modulator.  To transform from 

the z domain to the frequency domain, use the following transform: 

 

𝑧 =  𝑒𝑠∙𝑇  = 𝑒2𝜋∙𝑓∙𝑡 = e
2𝜋∙(

𝑓
𝑓𝑃𝐷

)
  (23.9)  

 

A handy identity to know is that: 

 

‖1 − 𝑒𝑗∙𝑥‖
2
= ‖1 − cos(𝑥) − 𝑗 ∙ sin(𝑥)‖2 = (1 − cos(𝑥) )2 + sin2(x) 

= 1 − 2 ∙ cos(x) + cos2(x) + sin2(x) = 2 ∙ ( 1 − cos(𝑥) ) 

= 2 ∙ sin2 (
𝑥

2
) 

 

(23.10)  

Applying the transform and identities yields [4]: 

 

𝑌𝑁𝑜𝑖𝑠𝑒(𝑓) =  (2𝜋)
2 ∙ (2 ∙ 𝑠𝑖𝑛 (

𝜋 ∙ 𝑓

𝑓𝑃𝐷
))

2∙(𝑛−1)

∙ ‖
𝑄𝑛(2𝜋 ∙ 𝑗 ∙ 𝑓)

𝑓𝑃𝐷
‖  (23.11)  

 

The above formula applies to both phase noise and spurs.  However, the discussion of the 

nature of Qn(z) now needs to be discussed to understand phase noise and spurs.    Qn(z) is 

simply the output of the nth quantizer minus its input.  Because the output of the quantizer can 

be 0 or 1, this is bounded between (and including) 0 and 1.    The spectral density of the 

quantization noise, q(s) can change based on the fractional word.  However, if the fraction is 

large and the modulator order is 3 or 4, then it is a fair assumption to assume that this is a 

uniformly distributed random variable between 0 and 1 [4].  The noise power is related to the 

variance of this random variable which is given as: 

 

𝑉𝑎𝑟𝑖𝑎𝑛𝑐𝑒{Q𝑛} = ∫ (𝑡 − 1/2)2 ∙ 𝑑𝑡
1

0

  =  1/12 (23.12)  

 

So for noise, the appropriate function is [4]: 

 

𝑌𝑁𝑜𝑖𝑠𝑒(𝑓) =  (2𝜋)
2 ∙ (2 ∙ 𝑠𝑖𝑛 (

𝜋 ∙ 𝑓

𝑓𝑃𝐷
))

2∙(𝑜𝑟𝑑𝑒𝑟−1)

∙ (
1𝐻𝑧

12 ∙ 𝑓𝑃𝐷
)  (23.13)  
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Figure 23.9  Theoretical Delta Sigma Noise for a 10 MHz Phase Detector Frequency 

 

 

From Figure 23.9 , note that there is a point at which all the modulators theoretically have the 

same performance. This can easily be found using the following condition: 

 

2 ∙ 𝑠𝑖𝑛 (
𝜋 ∙ 𝑓

𝑓𝑃𝐷
) =  ±1 (23.14)  

 

This implies that this occurs at  

 

𝑓 =  𝑓𝑃𝐷 ∙ (
1

6
+ k)        k = 0,1,2,…  (23.15)  

 

Of most interest is the case where k=0.  Indeed, there are theoretically higher order 

occurrences, but for these, there are other noise sources that can mask this, and the delta sigma 

noise tends to be better filtered out anyways for these frequencies.  The most interesting 

occurrence is therefore: 

 

𝑓 =  
𝑓𝑃𝐷
6
  (23.16)  
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Another frequency of interest is where the unshaped noise peaks in value.  This can be found 

by setting 

 

𝑠𝑖𝑛 (
𝜋 ∙ 𝑓

𝑓𝑃𝐷
) =  ±1 (23.17)  

This has a solution of:  

 

𝑓 =  
𝑓𝑃𝐷
2
 ∙ (1 + 2 ∙ 𝑘)      k = 0,1,2,… (23.18)  

 

This result shows that the worst-case phase noise at an offset frequency equal to half the phase 

detector frequency.  Due to the low pass response of the loop filter, it is typically only the first 

peaking in the phase noise response that is observed.  Furthermore, this low pass response 

typically makes this peaking happen at a frequency slightly less than half the phase detector 

frequency.  The magnitude of the first phase noise peak can be found by substituting this 

frequency in as is done below: 

 

𝑃𝐿𝐿𝑛𝑜𝑖𝑠𝑒∆Σ  (
𝑓𝑃𝐷
2
) = 10 ∙ log [(2𝜋)2 ∙ (2 ∙ 𝑠𝑖𝑛 (

𝜋

2
))

2∙(𝑜𝑟𝑑𝑒𝑟−1)

∙ (
1𝐻𝑧

12 ∙ 𝑓
𝑃𝐷

)] 

=  20 ∙ log(2π) + 20 ∙ (order − 1) ∙ log(2) − 10 ∙ log(12) − 10 ∙ log (
1𝐻𝑧

𝑓𝑃𝐷
) 

≈ 6 ∙ order − 10 ∙ log (
𝑓𝑃𝐷
1𝐻𝑧

) − 0.8 

(23.19)  

 

The theoretical value of this unfiltered first lobe is shown in Table 23.3 . 

 

fPD 2nd Order Modulator 3rd Order Modulator 4th Order Modulator 

1.25 MHz −49.8 −43.8 −37.8 

2.5 MHz −52.8 −46.8 −40.8 

5 MHz −55.8 −49.8 −43.8 

10 MHz −58.8 −52.8 −46.8 

20 MHz −61.8 −54.8 −49.8 

40 MHz −64.8 −57.8 −52.8 

Table 23.3 Magnitude of the First Lobe vs. fPD 
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One final property of the delta sigma modulator noise is the slope for lower frequencies of 

offsets much less than fPD/2.  At these lower frequencies, sin(x) can be approximated by x and 

the slope can therefore be approximated as follows. 

 

10 ∙ 𝑙𝑜𝑔 [(2𝜋)2 ∙ (2 ∙ 𝑠𝑖𝑛(
𝜋 ∙ 𝑓

𝑓
𝑃𝐷

))

2∙(𝑜𝑟𝑑𝑒𝑟−1)

∙ (
1𝐻𝑧

12 ∙ 𝑓
𝑃𝐷

)] 

≈  20 ∙ (𝑜𝑟𝑑𝑒𝑟 − 1) ∙ 𝑙𝑜𝑔 (𝑓)+ 10 ∙ log [(
(2𝜋)2 ∙ 1𝐻𝑧

12 ∙ 𝑓
𝑃𝐷

)(
2𝜋

𝑓
𝑃𝐷

)

2∙(𝑜𝑟𝑑𝑒𝑟−1)

]  

⇒    20 ∙ (𝑜𝑟𝑑𝑒𝑟 − 1)   𝑑𝑏/𝐷𝑒𝑐𝑎𝑑𝑒 

 

(23.20)  

Based on this slope equation, one commonly stated guideline is that the loop filter order should 

be one greater than the order of the delta sigma modulator.  The reasoning for this rule is this 

allows the loop filter to roll off the delta sigma noise at a faster rate than it is increasing.  If 

the loop bandwidth is wide relative to the phase detector frequency, then this rule has more 

merit, but it tends to be slightly over-conservative, especially for higher phase detector 

frequencies.  For instance, in the case of a fourth order modulator, it is almost never the case 

that a fifth order filter is necessary.  Nevertheless, one should be aware that higher order 

modulators do have increased noise pushed to higher frequencies and in general require higher 

order loop filters.  
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Chapter 24      Phase Noise of Passive Loop Filters 

 

Introduction 

The passive loop filter contains resistors that can degrade the phase noise at the PLL output 

due to their thermal noise.  Typically, this noise shows up at the loop bandwidth of the PLL 

and is worse for higher resistor values.  The general procedure outlined in this chapter for 

calculating the resistor noise is to multiply the resistor thermal noise voltage by a transfer 

function to get it to the output and then finally translate this to a phase noise. 

 

Calculating the Resistor Thermal Noise 

The voltage due to the resistor, VX, is easily found as follows: 

 

𝑉𝑥 = √4 ∙ 𝑇0 ∙ 𝐾 ∙ 𝑅𝑥 (24.1)  

                    T0 = Ambient Temperature in Kelvin = 300 Kelvin (typically) 

                                  K  = Boltzmann’s Constant =1.380658 ∙ 10-23  (Joule/Kelvin) 

Rx = Resistor Value in W 
 

Deriving the Transfer Functions 

The first step in deriving the transfer functions is to consider the open loop PLL and find the 

transfer function that translates the resistor noise to the VCO output.   It is easier to break the 

filter into two sections for analysis and create some commonly used terms and then focus on 

the specific noise derivations for the resistors of R2, R3, and R4. 

 

Breakdown of the Filter for Analysis 

In order to both simplify the analysis and make it more understandable; it makes sense to 

break the filter down as shown: 

R2

VR2

C2

+

-

R3VR3
- + R4VR4+

C3 C4

VMID

Z1(s) Z2(s)

VTUNE

-

 

Figure 24.1  Breakdown of Filter for Resistor Noise Analysis 
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In this figure, Z1(s) is the impedance of the loop filter looking from VMID to ground and 

ignoring the components C3, C4, R3, and R4.   

 

Z1(s) =  
1

𝑠
∙

1 + 𝑠 ∙ 𝐶2 ∙ 𝑅2

𝐶1 + 𝐶2 + 𝑠 ∙ 𝐶1 ∙ 𝐶2 ∙ 𝑅2
   (24.2)   

 

Z2(s) is the impedance as looking from VMID to ground while ignoring the components C1, 

C2, and R2.  

 

Z2(s) =
1

𝑠
∙
1 + 𝑠 ∙ (𝐶3 ∙ 𝑅3 + 𝐶4 ∙ 𝑅4 + 𝑅3 ∙ 𝐶4) + 𝑠2 ∙ 𝐶3 ∙ 𝐶4 ∙ 𝑅3 ∙ 𝑅4

𝐶3 + 𝐶4 + 𝑠 ∙ 𝐶3 ∙ 𝐶4 ∙ 𝑅4
   (24.3)  

 

A final intermediate function that is very useful is that for a voltage at VMID to VTUNE which 

is as follows: 

𝑇𝑀𝐼𝐷(s) =  
1

1 + 𝑠 ∙ (𝐶3 ∙ 𝑅3 + 𝐶4 ∙ 𝑅4 + 𝑅3 ∙ 𝐶4) + 𝑠2 ∙ 𝐶3 ∙ 𝐶4 ∙ 𝑅3 ∙ 𝑅4
   (24.4)  

 

R2 Resistor Noise 

The situation for the R2 resistor noise looks as follows: 

R2

VR2

C2

+

-

VMID

C1 Z2(s)

 

Figure 24.2  R2 Resistor Noise Analysis 

 

The noise transfer function to VR2 to VTUNE is given in (24.5).  Note that in the case of a second 

order filter, take the limit as Z2(s) = ∞ and the equation can be simplified. 

 

T𝑅2(s)

=  
T𝑀𝐼𝐷(s) ∙ 𝑠 ∙ 𝐶2 ∙ 𝑍2(𝑠)

1 + 𝑠 ∙ [𝐶2 ∙ 𝑅2 + 𝐶1 ∙ 𝑍2(𝑠) + 𝐶2 ∙ 𝑍2(𝑠)] + 𝑠2 ∙ 𝐶1 ∙ 𝐶2 ∙ 𝑅2 ∙ 𝑍2(𝑠)
  

(24.5)  



   210         Phase Noise of Passive Loop Filters 

                              

R3 Resistor Noise 

The situation for the R3 resistor noise looks as follows: 

R3VR3- + R4

C3 C4

VMID

Z1(s)

 

Figure 24.3  R3 Resistor Noise Analysis 

 

T𝑅3(s) =
T𝑀𝐼𝐷(s) ∙  𝑍2(𝑠)

𝑍1(𝑠) + 𝑍2(𝑠)
     (24.6)  

 

R4 Resistor Noise 

In the situation of the R4 resistor noise, it is easier to derive directly for the VTUNE voltage 

instead of VMID. 

R3 R4VR4 +

C3 C4

VTUNE

Z1(s)

-

 

Figure 24.4  R4 Resistor Noise Analysis 

 

T𝑅4(s) =  
1 + 𝑠 ∙ 𝐶3 ∙ ( 𝑅3 + 𝑍1(𝑠))

1 + 𝑠 ∙ [(𝐶3 + 𝐶4) ∙ (𝑅3 + 𝑍1(𝑠)) + 𝐶4 ∙ 𝑅4] + 𝑠2 ∙ 𝐶3 ∙ 𝐶4 ∙ 𝑅4 ∙ (𝑅3 + 𝑍1(𝑠))
     (24.7)  
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Translating the Noise Voltage to a dBc/Hz number for Phase Noise 

This explanation is found in reference listed by Lance Lascari.  In a similar way that leakage-

based reference spur was shown to relate to the modulation index of the signal, the modulation 

index is applied here to derive the phase noise.  

 

Rx_Noise(f) =  20 ∙ log (
𝛽(𝑓)

2
)   (24.8)  

 

The modulation index can be found by multiplying the voltage noise by the VCO gain. Note 

that it is necessary to multiply the noise voltage by a factor of 2  to convert it from an RMS 

voltage to a peak-to-peak voltage. 

   

β(f) =    
𝑓𝐷𝐸𝑉(𝑓)

𝑓𝑀𝑂𝐷(𝑓)
 =  

√2 ∙ 𝑉𝑅𝑥 ∙ 𝐾𝑉𝐶𝑂
𝑓

∙ ‖
𝑇𝑅𝑥(s)

1 + 𝐺(𝑠)/𝑁
‖
𝑠=2∙𝜋∙𝑗∙𝑓

  (24.9)  

 

These formulae can be combined for the final result as follows: 

 

 

Rx_Noise(f) =  20 ∙ log (  
𝑉𝑋 ∙ 𝐾𝑉𝐶𝑂

√2 ∙ 𝑓
∙ ‖

𝑇𝑅𝑥(s)

1 + 𝐺(𝑠)/𝑁
‖
𝑠=2∙𝜋∙𝑗∙𝑓

)   (24.10)  

 

Conclusion 

This chapter has discussed how to calculate resistor noise for loop filter resistors of a passive 

filter.  These concepts will be expanded in the next chapter to also cover active filters. 
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Chapter 25      Phase Noise of Active Loop Filters 

 

Introduction 

The concepts for calculating the phase noise of active filters is very similar to that of passive 

elements.  In fact, the op-amp simplifies a lot of the transfer functions and calculations.  This 

being said, the op amp also has its inherent noise voltage and current as well as any resistor 

noise for biasing circuitry.  This chapter discusses these details by first introducing 

terminology and going through the Active A, Active B, and Active C filters.   

 

Terminology 

Symbol Formula/Description Units 

VTUNE Noise voltage due to all sources referred to the input of the VCO 
𝑛𝑉

√𝐻𝑧
⁄  

VOUT 
Noise voltage at op amp output resulting from op-amp, filter 

resistors, or bias resistors.   
𝑛𝑉

√𝐻𝑧
⁄  

VAMP Op-amp noise voltage 
𝑛𝑉

√𝐻𝑧
⁄  

IAMP Op-amp noise current 
𝑝𝐴

√𝐻𝑧
⁄  

VRx √4 ∙ 𝑇 ∙ 𝑘 ∙ 𝑅𝑥 ∙ 𝐵    
𝑛𝑉

√𝐻𝑧
⁄  

T 300 K 

Rx Rx could be R1, R2, R3, R4, or Rth                       W 

k Boltzmann’s Constant = 1.380659 ×  10−23    J/K 

B 1 Hz 

Z1 
1+𝑠∙𝐶2∙𝑅2

𝑠∙(𝐶1+𝐶2)∙(1+𝑠∙𝑇1)
      ,      𝑇1 =   

𝑅2∙𝐶2∙𝐶1

𝐶1+𝐶2
 W 

𝑇𝑀𝐼𝐷(s) 
1

1 + 𝑠 ∙ (𝐶3 ∙ 𝑅3 + 𝐶4 ∙ 𝑅4 + 𝑅3 ∙ 𝐶4) + 𝑠2 ∙ 𝐶3 ∙ 𝐶4 ∙ 𝑅3 ∙ 𝑅4
   none 

Table 25.1 Terms for Active Filter Analysis 

 

Calculating the Total Phase Noise 

The general strategy is to calculate the noise voltage at the output of the op amp, VOUT, and 

then account for any additional poles in the filter afterwards to find the noise at the VCO input, 

VTUNE.  From this the resulting phase noise is calculated using FM Modulation theory. 

 

𝑁𝑜𝑖𝑠𝑒(𝑓) =  20 ∙ log (  
𝑉𝑇𝑈𝑁𝐸 ∙ 𝐾𝑉𝐶𝑂

√2 ∙ 𝑓
∙ ‖

1

1 + 𝐺(𝑠)/𝑁
‖
𝑠=2∙𝜋∙𝑗∙𝑓

) (25.1)  
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Active A Filter Noise Analysis 

 

− 

+

Charge 

Pump

R2 C2

VAMP

C1

R1 IAMP

VOUT

+

-

 

Figure 25.1  Active A Filter Op-Amp Noise Analysis 

 

Op Amp Noise Transfer Function 

The current from negative terminal to ground due to VAMP is: 

𝑖 =   
𝑉𝐴𝑀𝑃

𝑅1 + 1
(𝑠 ∙ 𝐶1)⁄

 (25.2)  

 

This same current flows through R2 and C2 and generates the following across them. 

𝑉𝑂𝑈𝑇 = 𝑉𝐴𝑀𝑃 ∙
𝑅2 +

1
𝑠 ∙ 𝐶2

𝑅1 +
1

𝑠 ∙ 𝐶1

  =   𝑉𝐴𝑀𝑃 ∙
𝐶1

𝐶2 
∙
1 + 𝑠 ∙ 𝑅2 ∙ 𝐶2

1 + 𝑠 ∙ 𝑅1 ∙ 𝐶1
 (25.3)  

 

Now VAMP is also at the inverting terminal, so the total transfer function is: 

𝑉𝑂𝑈𝑇
𝑉𝐴𝑀𝑃

= 1 +  
𝐶1

𝐶2 
∙
1 + 𝑠 ∙ 𝑅2 ∙ 𝐶2

1 + 𝑠 ∙ 𝑅1 ∙ 𝐶1
 (25.4)  

 

As for the current noise, this multiplies R2 and C2, but is split with R1 and C1 

𝑉𝑂𝑈𝑇
𝐼𝐴𝑀𝑃

=
1

𝑠
∙
(1 + 𝑠 ∙ 𝐶1 ∙ 𝑅1) ∙ (1 + 𝑠 ∙ 𝐶2 ∙ 𝑅2)

𝐶1 + 𝐶2 + 𝑠 ∙ 𝐶1 ∙ 𝐶2 ∙ (𝑅1 + 𝑅2)
 (25.5)  

 

So, the total noise from the amp is: 

𝑉𝑂𝑈𝑇

= √[𝑉𝐴𝑀𝑃 ∙ (1 +  
𝐶1

𝐶2 
∙
1 + 𝑠 ∙ 𝑅2 ∙ 𝐶2

1 + 𝑠 ∙ 𝑅1 ∙ 𝐶1
)]
2

+ [𝐼𝐴𝑀𝑃 ∙ (
1

𝑠
∙
(1 + 𝑠 ∙ 𝐶1 ∙ 𝑅1) ∙ (1 + 𝑠 ∙ 𝐶2 ∙ 𝑅2)

𝐶1 + 𝐶2 + 𝑠 ∙ 𝐶1 ∙ 𝐶2 ∙ (𝑅1 + 𝑅2)
)]

2

 
(25.6)  

  



   214         Phase Noise of Active Loop Filters 

                              

R1 and R2 Resistor Noise Transfer Function 

 

− 

+

Charge 

Pump

R2 C2

VR1

C1

R1

VR2

VOUT

+-

+-

 

Figure 25.2  Active A Filter Resistor Noise Analysis 

 

For R2, the voltage goes straight to the output, so the transfer function is just unity.  For R1, 

current from negative terminal to ground is: 

 

𝑖 =   
𝑉𝑅1

𝑅1 + 1
(𝑠 ∙ 𝐶1)⁄

 (25.7)  

 

This same current flows through R2 and C2 and generates the following across them. 

 

𝑉𝑂𝑈𝑇 = 𝑉𝑅1 ∙   
𝐶1

𝐶2 
∙
1 + 𝑠 ∙ 𝑅2 ∙ 𝐶2

1 + 𝑠 ∙ 𝑅1 ∙ 𝐶1
 (25.8)  

 

The total transfer function for R1 and R2 is therefore: 

 

𝑉𝑂𝑈𝑇 = √[𝑉𝑅1 ∙ (
𝐶1

𝐶2 
∙
1 + 𝑠 ∙ 𝑅2 ∙ 𝐶2

1 + 𝑠 ∙ 𝑅1 ∙ 𝐶1
)]
2

+ (𝑉𝑅2)2 (25.9)  
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Bias Resistor Noise Analysis 

 

 

− 

+

Charge 

Pump

R2 C2

C1

R1

Ra

Rb

VRb

Cb

VRa

VOUT

+

-

+

-

 

Figure 25.3  Active A Filter Bias Resistor Noise Analysis 

 

The first thing to do is redraw the circuit using a Thevenin equivalent combining the noise 

sources. 

 

𝑅𝑡ℎ =
𝑅𝑎 ∙ 𝑅𝑏

𝑅𝑎 + 𝑅𝑏
 (25.10)  

 

Vth

 

− 

+

Charge 

Pump

R2 C2

C1

R1

Rth

Cb

VOUT

+

-

 

Figure 25.4  Thevenin Equivalent for Bias Resistor Noise Analysis 

 

The voltage induced at the output is therefore: 

 

𝑉𝑂𝑈𝑇 =
√4 ∙ 𝑇 ∙ 𝑘 ∙ 𝑅𝑡ℎ ∙ 𝐵 

1 + 𝑠 ∙ 𝐶𝑏 ∙ 𝑅𝑡ℎ
∙ (1 +  

𝐶1

𝐶2 
∙
1 + 𝑠 ∙ 𝑅2 ∙ 𝐶2

1 + 𝑠 ∙ 𝑅1 ∙ 𝐶1
) (25.11)  
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Active B Filter Noise Analysis 

 

− 

+

Charge 

Pump

R2 C2

C1

VAMP

IAMP

VOUT

+

-

 

Figure 25.5  Active B Filter Op-Amp Noise Analysis 

 

Op Amp Noise Transfer Function 

The noise voltage of VAMP goes straight to the output. 

 

𝑉𝑂𝑈𝑇
𝑉𝐴𝑀𝑃

 =   1 

 

(25.12)  

The noise caused by the op amp noise current is just in the feedback path and 

can be expressed as follows: 

    

𝑉𝑂𝑈𝑇
𝐼𝐴𝑀𝑃

 =   
1 + 𝑠 ∙ 𝐶2 ∙ 𝑅2

𝑠 ∙ (𝐶1 + 𝐶2) ∙ (1 + 𝑠 ∙ 𝑇1)
 

   

(25.13)  

Mathematics can be simplified by introducing a constant for the pole of the filter. 

 

𝑇1 =   
𝑅2 ∙ 𝐶2 ∙ 𝐶1

𝐶1 + 𝐶2
 (25.14)  

 

The total noise from the amp is: 

 

𝑉𝑂𝑈𝑇 = √(𝑉𝐴𝑀𝑃)
2 + [𝐼𝐴𝑀𝑃 ∙ (

1 + 𝑠 ∙ 𝐶2 ∙ 𝑅2

𝑠 ∙ (𝐶1 + 𝐶2) ∙ (1 + 𝑠 ∙ 𝑇1)
)]

2

 (25.15)  
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R2 Resistor Noise Transfer Function 

The following figure shows the equivalent circuit for the transfer function for the voltage noise 

due to resistor R2.   

 

− 

+

Charge 

Pump

R2 C2

C1

VOUT

VR2- +

 

Figure 25.6  Active B Filter Resistor Noise Analysis 

 

The noise caused by the resistor R2 is derived by taking the current through the circuit below 

and multiplying by the impedance of C1. 

  

𝑉𝑂𝑈𝑇
𝑉𝑅2

 =   

1
𝑠 ∙ 𝐶1

1
𝑠 ∙ 𝐶1

+ 
1

𝑠 ∙ 𝐶2
+ 𝑅2

 =   
𝐶2

(𝐶1 + 𝐶2) ∙ (1 + 𝑠 ∙ 𝑇1)
 

      

(25.16)  

So the noise from the resistor R2 to the output is: 

 

𝑉𝑂𝑈𝑇 = √[𝑉𝑅2 ∙ (
𝐶2

(𝐶1 + 𝐶2) ∙ (1 + 𝑠 ∙ 𝑇1)
)]
2

 

 

(25.17)  

Bias Resistor Noise Analysis 

The bias voltage is filtered by the capacitor, but then passes straight to the output.  Vth is 

defined the same way as it is for the Active A filter. 

 

𝑉𝑂𝑈𝑇 =
𝑉𝑡ℎ

1 + 𝑠 ∙ 𝐶𝑏 ∙ 𝑅𝑡ℎ
 (25.18)  
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Active C Filter Noise Analysis 

 

-

+

Charge 

Pump

Rb

R2

C2

C1

Ra

VAMP

IAMP

VOUT

+

-

 

Figure 25.7  Active C Filter Noise Analysis 

 

Op Amp Noise Transfer Function 

The noise voltage at the output caused by VAMP is derived in a similar way as before. 

𝑉𝑂𝑈𝑇
𝑉𝐴𝑀𝑃

 =   1 +
𝑅𝑏

𝑅𝑎 +
1 + 𝑠 ∙ 𝐶2 ∙ 𝑅2

𝑠 ∙ (𝐶1 + 𝐶2 + 𝑠 ∙ 𝑅2 ∙ 𝐶2 ∙ 𝐶1)
      

 
(25.19)  

The noise voltage at the output caused by IAMP just creates a voltage across Rb 

𝑉𝑂𝑈𝑇
𝐼𝐴𝑀𝑃

 =   𝑅𝑏 (25.20)  

The total noise from the op-amp is therefore: 

𝑉𝑂𝑈𝑇

= √[𝑉𝐴𝑀𝑃 ∙ (1 +
𝑅𝑏

𝑅𝑎 +
1 + 𝑠 ∙ 𝐶2 ∙ 𝑅2

𝑠 ∙ (𝐶1 + 𝐶2+ 𝑠 ∙ 𝑅2 ∙ 𝐶2 ∙ 𝐶1)
      

)]

2

+ (𝐼𝐴𝑀𝑃 ∙ 𝑅𝑏)
2 

(25.21)  

R2 Resistor Noise Transfer Function 

The R2 Resistor noise is as it was for the Active B but multiplied by the gain of the op amp. 

 

𝑉𝑂𝑈𝑇
𝑉𝑅2

 =   
𝑠 ∙ 𝐶2

𝑠 ∙ (𝐶1 + 𝐶2) ∙ (1 + 𝑠 ∙ 𝑇1)      
∙ (1 +

𝑅𝑏

𝑅𝑎
) 

(25.22)  

 

Bias Resistor Noise Analysis 

The bias voltage is multiplied by the same transfer function as the amp noise voltage, but in 

this case, the bias can be set to 0 V, so this noise is zero. 
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Impact of Adding an Extra Pole or Two 

 

 

R3 R4

C3 C4

VTUNE

VOUT

 

Figure 25.8  Added Poles after Op-Amp 

 

Regardless of the approach, it is desirable to add a pole or two after the op amp as this will 

filter all the noise sources discussed.   The transfer function of this added pole is: 

 

𝑉𝑇𝑈𝑁𝐸
𝑉𝑂𝑈𝑇

 =   
1

1 + s ∙ (C3 ∙ R3 + C4 ∙ R4 + R3 ∙ C4) + s2 ∙ C3 ∙ C4 ∙ R3 ∙ R4      
 

 

(25.23)  

For the resistor noise due to these sources, view this as: 

R3 R4

C3 C4

VTUNE

VR3 VR4

Vx

+- +-

 

Figure 25.9  Noise Analysis for Added Poles 

 

For Resistor Noise R3: 

𝑍3 =   
1 + 𝑠 ∙ 𝑅4 ∙ 𝐶4

s ∙ C3 + s ∙ C4 + s2 ∙ C3 ∙ C4 ∙ R4 
 (25.24)  

𝑉𝑥

𝑉𝑅3
 =   

𝑍3

R3 + Z3 
 (25.25)  

𝑉𝑇𝑈𝑁𝐸
𝑉𝑅3

 =
𝑉𝑥

𝑉𝑅3
 ∙

1

1 + 𝑠 ∙ 𝐶4 ∙ 𝑅4
=  

𝑍3

R3 + Z3 
   ∙

1

1 + 𝑠 ∙ 𝐶4 ∙ 𝑅4
 (25.26)  
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For Resistor Noise R4: 

 

𝑍4 =  𝑅4 + 
𝑅3

1 + s ∙ R3 ∙ C3 
 (25.27)  

 

𝑉𝑇𝑈𝑁𝐸
𝑉𝑅4

 =
1

1 + 𝑠 ∙ 𝐶4 ∙ 𝑍4
 (25.28)  

 

The total noise voltage at the output due to the resistors and added pole is as follows: 

  

𝑉𝑇𝑈𝑁𝐸 = 

  √(𝑉𝑂𝑈𝑇
2) ∙ 𝑍32 + [(𝑉𝑅3) ∙ (

𝑍3

R3 + Z3 
   ∙

1

1 + 𝑠 ∙ 𝐶4 ∙ 𝑅4
)]
2

+ [(𝑉𝑅4) ∙ (
1

1 + 𝑠 ∙ 𝐶4 ∙ 𝑍4
)]
2

  
(25.29)  

 

 

Conclusion 

The noise of an active filter is the sum of the noise due to the filter resistors, op-amp noise 

voltage, and op-amp noise current.  Active A and B filters also require a bias network, but the 

resistor noise can be significantly reduced to be a non-contributor by adding a large capacitor 

in parallel.   Once the noise from all the sources is added, this creates FM modulation on the 

VCO in a similar way as a passive filter.  The addition of poles after the op amp is often 

advantageous because it can attenuate the op-amp noise as well as the spurs. 
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Appendix    Summary of Noise Transfer functions 

The transfer functions have been derived for the active filters and the table summarizes all the 

findings. 

 

Noise Filter Type Formula 

O
p
 A

m
p

 

Active A 

√
  
  
  
  
  
  

[𝑉𝐴𝑀𝑃 ∙ (1 +  
𝐶1

𝐶2 
∙
1 + 𝑠 ∙ 𝑅2 ∙ 𝐶2

1 + 𝑠 ∙ 𝑅1 ∙ 𝐶1
)]
2

+ [𝐼𝐴𝑀𝑃 ∙ (
(𝑅2 + 

1
𝑠 ∙ 𝐶2) ∙

(1 + 𝑠 ∙ 𝐶1 ∙ 𝑅1)

𝑠 ∙ 𝐶1 ∙ (𝑅1 + 𝑅2) + 1 + 𝐶1/𝐶2
)]

2
 

Active B √𝑉𝐴𝑀𝑃
2 + [𝐼𝐴𝑀𝑃 ∙ 𝑍2]2 

Active C √[𝑉𝐴𝑀𝑃 ∙ (1 +
𝑅𝑏

𝑅𝑎 + 𝑍2      
)]
2

+ [𝐼𝐴𝑀𝑃 ∙ 𝑅𝑏]2 

L
o
o
p
 F

il
te

r 

R
es

is
to

rs
 

Active A √[𝑉𝑅1 ∙ (
𝐶1

𝐶2 
∙
1 + 𝑠 ∙ 𝑅2 ∙ 𝐶2

1 + 𝑠 ∙ 𝑅1 ∙ 𝐶1
)]
2

+ (𝑉𝑅2)2 

Active B 𝑉𝑅2 ∙ (𝑍2 ∙
𝑠 ∙ 𝐶2

1 + 𝑠 ∙ 𝐶2 ∙ 𝑅2
) 

Active C 𝑉𝑅2 ∙ (𝑍2 ∙
𝑠 ∙ 𝐶2

1 + 𝑠 ∙ 𝐶2 ∙ 𝑅2
) ∙ (1 +

𝑅𝑏

𝑅𝑎
) 

O
p
 A

m
p
 B

ia
s 

R
es

is
to

rs
 Active A 

𝑉𝑡ℎ

1 + 𝑠 ∙ 𝐶𝑏 ∙ 𝑅𝑡ℎ
∙ (1 +  

𝐶1

𝐶2 
∙
1 + 𝑠 ∙ 𝑅2 ∙ 𝐶2

1 + 𝑠 ∙ 𝑅1 ∙ 𝐶1
) 

Active B 
𝑉𝑡ℎ

1 + 𝑠 ∙ 𝐶𝑏 ∙ 𝑅𝑡ℎ
 

Active C 0 

T
h
ir

d
 a

n
d
 F

o
u
rt

h
 

P
o
le

 

All Filter 

Types 

√(
𝑍3

R3 + Z3 
   ∙

𝑉𝑅3
1 + 𝑠 ∙ 𝐶4 ∙ 𝑅4

)
2

+ (
𝑉𝑅4

1 + 𝑠 ∙ 𝐶4 ∙ 𝑍4
)
2

 

𝑍3 =  
1 + 𝑠 ∙ 𝑅4 ∙ 𝐶4

s ∙ C3 + s ∙ C4 + s2 ∙ C3 ∙ C4 ∙ R4 
 

𝑍4 =  𝑅4 + 
𝑅3

1 + s ∙ R3 ∙ C3 
 

Table 25.2 Active Filter Formulas 
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Chapter 26      Integrated Phase Noise Quantities 

 

Introduction 

There are several phase noise metrics that are derived by integrating the phase noise over a 

certain bandwidth in order to make it easier to interpret the phase noise on the system 

performance.  These metrics include signal to noise ratio (SNR), root mean square (RMS) 

phase error, jitter, and error vector magnitude (EVM).   This chapter discusses all these 

metrics. 

 

Calculating the Integrated Phase Noise  

Formula for Calculation of Integrated Phase Noise 

For all of these noise quantities, the first step is to calculate the area under the phase noise 

profile.  For this, there are two limits.  a is the lower limit and b is the upper limit.   

Offset

1
0

 ×
 l
o

g
( 

L
(f

)/
1

0
 )

a b

A/2

 

Figure 26.1  Integrated Phase Noise 

 

The determination of the lower limit, a, is application specific, for some applications, like 

GSM, it is chosen to be the frame rate, which would be 1.733 kHz.   The upper limit is 

sometimes chosen to be the bit rate or the channel spacing.  Because phase noise rolls off, it 

is the lower limit that is typically more important, and in many cases, making b infinite only 

slightly increases this area.  The area needs to be multiplied by two in order to get the phase 

noise on the left and right sides of the carrier.  This formula assumes that the phase noise, L(f), 

is in scalar units, not logarithmic units.  The integrated noise, A, is computed by integrating 

the phase noise over a specified bandwidth and multiplying by two. 
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A = 2 ∙ ∫ 𝐿(𝑓) ∙ 𝑑𝑓
𝑏

𝑎

  (26.1)   

 

L(f) expressed in logarithmic units is in dBc/Hz.  After converted to scalar units, it has units 

of 1/Hz.  When this is integrated over frequency, this unit cancels and leaves this as a 

dimensionless quantity.  A few rules of thumb regarding phase noise area can now be seen.  

If phase noise is increased by 6 dB at all offsets, the phase noise area is quadrupled.  

Decreasing the lower limit will always increase this area.   

 

Impact of Spurs on the Integrated Phase Noise 

In most cases, spurs are outside the loop bandwidth and have only a very small impact on the 

integrated phase noise.  However, many fractional PLLs and especially delta sigma PLLs have 

spurs that can occur inside the loop bandwidth.  The way to treat a spur is to assume that all 

the energy is inside a 1 Hz bandwidth.   The impact of a spur depends on the bandwidth.  If 

one considers the phase noise to be flat within the integration bandwidth, then the spur relates 

to the phase noise in a 10∙log(BW) sense.  For instance, a spur that is 40 dB above the noise 

floor has the same integrated noise as the noise floor itself integrated over a 10 kHz bandwidth.  

Two spurs that are 37 dB above this noise floor would also have the equivalent noise energy.  

 

Choice of Loop Bandwidth and Phase Margin for Minimum Integrated Phase Noise 

The PLL noise (charge pump, input path, and counters) tends to dominate inside the loop 

bandwidth and the VCO phase noise tends to dominate outside the loop bandwidth.   The in-

band phase noise sources tend to be flatter, and the out-band sources tend to roll off.  This 

implies that there is an offset frequency for which they are equal.  If one chooses the loop 

bandwidth equal to this frequency, then this should be close to the choice that minimizes the 

integrated noise.  However, it is not exactly the optimal choice when all factors are considered.  

The VCO noise can impact the in-band phase noise for narrower loop bandwidths.  The PLL 

noise is not perfectly flat.  Furthermore, peaking can also distort this result.  Nevertheless, 

choosing the loop bandwidth to be the offset frequency where the free running VCO noise is 

equal to the PLL noise is a good starting point for the optimal loop bandwidth.    If the PLL 

noise improves with VCO noise constant, then this optimal loop bandwidth increases.  If the 

VCO noise improves with the PLL noise constant, then this optimal loop bandwidth decreases. 

The phase margin also has an impact on the integrated phase noise.  Low phase margin 

typically causes peaking in the phase noise response near the loop bandwidth.  This peaking 

can contribute significantly to the integrated phase noise.  In general, designing for the highest 

phase margin possible yields the lowest integrated phase noise because it causes a much flatter 

response.  There are design trade-offs with the phase margin and lock time as well, and this is 

discussed in more detail later in this book. 
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Signal to Noise Ratio (SNR) 

The integrated phase noise, A, can be thought of the noise power relative to the carrier, 

provided that the lower limit, a, is greater than zero so that the carrier signal is not included.  

All which is necessary to find the SNR is to find the reciprocal of the integrated phase noise. 

 

SNR = 
1

𝐴
  (26.2)   

 

It is common practice to express the SNR in dB as well as scalar units. 

 

SNR𝑑𝐵 = 10 ∙ log (
1

𝐴
)  (26.3)   

 

Rule of Thumb for Finding the Signal to Noise Ratio of Two Mixed Signals 

If two signals are presented to the input of an ideal mixer, then the actual calculation of SNR 

would involve knowing the spectrum of the two signals.  However, some coarse rules of thumb 

can be developed that require much less work; this is helpful in understanding how a PLL 

used to generate a local oscillator can impact system performance. 

SPLL + NPLL

SIN + NIN SOUT + NOUT

 

Figure 26.2  PLL Noise Impact on SNR 

 

Consider an input signal to a mixer: 

 

𝑆1 = S𝐼𝑁  +  𝑁𝐼𝑁  (26.4)  

 

Where S1 is the total input signal, SIN is the desired input signal, and NIN is the undesired 

input noise.  Now assume that the PLL signal is: 

 



Integrated Phase Noise Quantities  

 

225 

 

S2  =  𝑆𝑃𝐿𝐿 +  𝑁𝑃𝐿𝐿 (26.5)  

 

The output signal is therefore the product of the two signals S1 and S2 

 

S𝑂𝑈𝑇 + 𝑁𝑂𝑈𝑇 =   S𝑃𝐿𝐿 ∙ S𝐼𝑁 + S𝑃𝐿𝐿 ∙ N𝐼𝑁 + S𝐼𝑁 ∙ N𝑃𝐿𝐿 + N𝑃𝐿𝐿 ∙ N𝐼𝑁 (26.6)  

 

Now the first term is the desired signal power, and the last term is negligible.  The output 

signal to noise ratio can therefore be approximated as: 

 

SNR =  
S𝑃𝐿𝐿 ∙ S𝐼𝑁

S𝑃𝐿𝐿 ∙ N𝐼𝑁 + S𝐼𝑁 ∙ N𝑃𝐿𝐿
 =  

(
𝑆𝑃𝐿𝐿
𝑁𝑃𝐿𝐿

) ∙ (
𝑆𝐼𝑁
𝑁𝐼𝑁

)

(
𝑆𝑃𝐿𝐿
𝑁𝑃𝐿𝐿

) + (
𝑆𝐼𝑁
𝑁𝐼𝑁

)
=
𝑆𝑁𝑅1 ∙ 𝑆𝑁𝑅2
𝑆𝑁𝑅1 + 𝑆𝑁𝑅2

 (26.7)  

 

In the above equation, SNR1 and SNR2 represent the signal to noise ratios of S1 and S2, 

respectively.  In an analogous way that two resistances combine in parallel, the lower signal 

to noise ratio dominates.  The above calculations contain some very gross approximations, 

but they do show how the signal to noise ratio of the PLL can degrade the signal to noise ratio 

of the whole system. 

Understanding Standard Deviation 

Introducing the Concept of Standard Deviation 

In order to understand integrated noise concepts like RMS phase error, EVM, and jitter, it is 

necessary to understand the concept of standard deviation.  The standard deviation is a 

measure of central tendency.  It can be shown that the average of samples approaches a 

Gaussian distribution as the sample size approaches infinity, except for the most pathological 

cases that only a mathematician could dream of.  For a Gaussian distribution, it can be shown 

that if something is sampled, then 68% of the time, the sample will be within one standard 

deviation of the mean value, 95% of the time, the sample will be within two standard 

deviations, and 99% of the time will be within three standard deviations.   

 

Estimating Standard Deviation from Minimum, Maximum, and Sample Size 

In theory, if one took enough samples, then they would be arbitrary big and arbitrarily small 

if they came from a Gaussian distribution.  Although shunned by theoreticians, a rough guess 

at the standard deviation can be made from the minimum, maximum, and sample size.  One 

approach is to assume that the minimum and maximum are below and above the average by 

some number of standard deviations, n.  For instance, for a sample size of 22, one would 

expect roughly 95.5%, or 21 of these samples to be within two standard deviations and one 

sample to be out of this range.  For the other 21 samples, the one farthest away is likely to be 

close as this many standard deviations way from the mean in the other direction.  Although 
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this overestimates, the outlier sample could be more than two standard deviations.  So these 

errors will approximately cancel out and become less of a consideration as the sample size 

grows larger.  From this reasoning, we would expect the difference between the minimum and 

maximum to be about four standard deviations.  In general, this can be expressed as follows. 

σ =  
𝑀𝑎𝑥𝑖𝑚𝑢𝑚 −𝑀𝑖𝑛𝑖𝑚𝑢𝑚

𝜌
  (26.8)  

ρ = 2 ∙ Φ−1 (1 −
1

2 ∙ 𝑛
) (26.9)  

 

 −1 is the inverse of the standard normal distribution function with zero mean and standard 

deviation of 1.  In general, the value that this difference is divided by, , is dependent on the 

sample size, N.  Table 26.1 shows values for the parameter, .   A numerical Monte Carlo 

simulation was also used to for comparison purposes and results matched the formula closely 

with perhaps the formula estimating  about 0.2 high for smaller values of N.  As an example, 

consider a sample size of 50.  To estimate the standard deviation, , take the difference 

between the maximum and minimum and divide by 4.65. 

 

N 
Computer Simulation Formula 

Minimum Maximum   

2 −0.57 0.56 1.12 1.35 

3 −0.85 0.85 1.70 1.93 

4 −1.04 1.02 2.03 2.30 

5 −1.16 1.16 2.32 2.56 

6 −1.27 1.27 2.54 2.77 

7 −1.36 1.35 2.70 2.93 

8 −1.42 1.43 2.86 3.07 

9 −1.49 1.48 2.96 3.19 

10 −1.54 1.54 3.08 3.29 

11 −1.58 1.59 3.18 3.38 

12 −1.63 1.63 3.26 3.46 

13 −1.67 1.67 3.34 3.54 

14 −1.70 1.70 3.40 3.61 

15 −1.73 1.74 3.48 3.67 

16 −1.76 1.77 3.54 3.73 

17 −1.79 1.80 3.60 3.78 

18 −1.82 1.82 3.64 3.83 

19 −1.84 1.84 3.68 3.88 

20 −1.87 1.87 3.74 3.92 

22 -1.91 1.91 3.82 4.00 

50 −2.25 2.27 4.54 4.65 

100 −2.51 2.51 5.02 5.15 

200 −2.74 2.75 5.50 5.61 

500 −3.04 3.06 6.12 6.18 

1000 −3.21 3.24 6.48 6.58 

104 −3.75 3.79 7.58 7.78 

105 −4.42 4.42 8.84 8.83 

106 −4.89 4.89 9.78 9.78 

107 −5.33 5.33 10.66 10.65 

108 −5.73 5.73 11.46 11.46 

109 −6.11 6.11 12.22 12.22 

Table 26.1 Calculation of the parameter  
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Relating the Integrated Phase Noise to a Standard Deviation 

Relating the Integrated Phase Noise to the 2

v  

The key link to relate integrated noise to the time domain begins with first understanding how 

integrated phase noise relates to a standard deviation of the noise voltage.    It is well 

established that the standard deviation for a continuous random variable, u(x), with zero mean 

can be calculated as follows: 

 

σ = ∫ 𝑢2(𝑥) ∙ 𝑑𝑥
∞

−∞

  (26.10)  

 

In the case of phase noise, this is noise power relative to the carrier power, which can be 

thought of the square of noise voltage to the square of the carrier voltage.  This technically 

would involve a resistance, but as it is the same for both the carrier and the noise, it cancels 

out.  The phase noise limits on the integrated noise formula would just indicate that the noise 

voltage does not apply beyond these limits.  The key relationship that therefore follows is that 

the integrated noise is the variance of the noise voltage.   

 

A = 2 ∙ ∫ 𝐿(𝑓) ∙ 𝑑𝑓
𝑏

𝑎

 = ∫ 𝑣2(𝑓) ∙ 𝑑𝑓
∞

−∞

  = σ𝑣
2   (26.11)  

 

In this case, v, is the voltage noise relative to the carrier and has an average value of zero.   2

v  

is the square of the standard deviation of the noise voltage.  It easily follows that: 

 

σ𝑣 = √2 ∙ ∫ 𝐿(𝑓) ∙ 𝑑𝑓
𝑏

𝑎

  (26.12)  

 

v is  a relative voltage.  If it has a value of one, this means that the noise power is equal to 

the carrier power.  In general, it is fair to assume that this has a value of much less than one. 

 

Relating Voltage Noise to a Phase Error  

Now that it is understood how to calculate the standard deviation of the relative noise voltage, 

v, it now needs to be related the standard deviation of the phase error, f.  For this derivation, 

f  has units of radians and will be considered to be small. 
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Figure 26.3  Relating Voltage to Phase 

 

In the time domain, the carrier can be thought of as a sine wave.  v is the relative noise voltage 

in relation to the amplitude of this carrier and f is the phase of the carrier.   A reasonable 

assumption is to assume that f  is small which justifies approximating sin(f) as f .  It therefore 

follows that the standard deviation of the relative voltage noise can be equated to the standard 

deviation of the phase error.  

 

σ∅  ≈ σ𝑣   (26.13)  

 

In summary, the integrated noise has been shown to be equal to the variance of the noise 

voltage.  The square root of the noise voltage is by definition the standard deviation of the 

noise voltage, and the standard deviation of the noise voltage has been shown to be related to 

the standard deviation of the phase error.    

 

RMS Phase Error Calculation 

Equation (26.14) is the final link between integrated phase noise and phase error. The RMS 

Phase Error expressed in radians can now be calculated. 

 

σ𝑣(𝑟𝑎𝑑) = σ𝑣 = √2 ∙ ∫ 𝐿(𝑓) ∙ 𝑑𝑓
𝑏

𝑎

 (26.14)  

 

 Usually, the RMS phase error is expressed in degrees.  The conversion is very 

straightforward.  

σ∅(𝑑𝑒𝑔) =
180

𝜋
∙ σ∅(𝑟𝑎𝑑) =

180

𝜋
∙ √2 ∙ ∫ 𝐿(𝑓) ∙ 𝑑𝑓

𝑏

𝑎

  (26.15)  
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RMS Phase Error Interpretation in the Time Domain and Jitter 

RMS Phase Error Interpretation in the Time Domain 

 

 

Figure 26.4  Illustration of RMS Phase Error of a Signal in the Time Domain 

 

The result of running a square wave with a nonzero RMS phase error through a comparator 

or any digital gate that squares up the wave will result in a square wave as shown in Figure 

26.4 .  The rising edges of the square wave do not always occur at exactly the time they should, 

but have a random phase error that can be either positive or negative.  The average value of  

this phase error is zero, but the standard deviation is nonzero and is the RMS phase error.   

 

Understanding Jitter and the Relationship it has to RMS Phase Error 

Relationship between RMS Phase Error and Jitter 

Notice how the rising edges of the signal in Figure 26.4  do not always start at the time they 

should, but jitter around the desired value.   RMS Jitter is the conversion of the RMS phase 

error to a time error.  In order to calculate from RMS phase error to RMS jitter (t) it is 

necessary to convert this phase difference to cycles, and multiply by the reciprocal of the 

frequency (f).  

 

σ𝑡 = 
1

𝑓
∙
𝜎∅(𝑟𝑎𝑑)

2𝜋
 =  

1

𝑓
∙
𝜎∅(𝑑𝑒𝑔)

360
 (26.16)  

 

For an example, consider a 10 MHz signal with 5 degrees RMS phase error.  Since the period 

of this signal is 0.1 ms, a 5 degree RMS phase error is 5/360 = 1/72 cycles.  0.1ms/72 =   1.339 

ns.   

 

Cycle to Cycle Jitter 

For cycle-to-cycle jitter, each rising edge of the signal is compared relative to the previous 

cycle.  This is different than RMS jitter, where it is compared to an ideal signal.  Consider a 

signal for which at some time, all rising edges get shifted by a large phase error.  The RMS 

jitter would be large because all the rising edges are off from what they would be for an ideal 
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signal.  However, the cycle-to-cycle jitter would be much less degraded by this large phase 

shift, since it only would be important for one cycle. 

 

Peak to Peak Jitter and Jitter Measurement in the Time Domain 

RMS jitter is the standard deviation of the time error of the rising edges.  Peak to peak jitter 

is the maximum over all cycles.  In theory, if one waits for a longer time, then the peak-to-

peak jitter would be greater.  Unlike RMS jitter and cycle to cycle jitter, Peak to peak jitter 

can be measured on an oscilloscope.  The general method is to set the oscilloscope on infinite 

persistence and see the time difference between the minimum and the maximum edges of the 

signal.    

 

Crude Method of Relating Peak to Peak Jitter to RMS Jitter 

The most accurate way to calculate RMS jitter is to use the method of integrating the phase 

noise.  However, a spectrum analyzer is not always available, and many people who work 

with jitter tend to have a more digital focus and familiarity of oscilloscopes.  Peak to peak 

jitter can be measured on an oscilloscope by setting the display to infinite persistence and 

observing the signal in the time domain.  This measurement does not account for the lower 

and upper integration limits as shown in Figure 26.1 .  Nevertheless, this method appeals to 

many because it requires only an oscilloscope, and it is more intuitive than measuring jitter in 

the frequency domain.  If one accepts this as the peak to peak jitter, it can be related to RMS 

jitter by equation (26.8) and (26.9), once the sample size is known.  The sample size can be 

found by taking the sampling time divided by the number of samples taken per second.   An 

even more crude method is to sample for “a long time” and divide this value by three, although 

this method may not be that accurate.    

 

EVM and RMS Phase Error Interpretation in the Constellation Diagram 

RMS Phase Error Interpretation in the Constellation Diagram 

If one visualizes the RMS error in the time domain, then it can be seen why this may be 

relevant in clock recovery applications, or any application where the rising (or falling) edges 

of the signal need to occur in a predictable fashion.   The impact of RMS phase error is more 

obvious when considering a constellation diagram. 

The constellation diagram shows the relative phases of the I (in phase) and Q (in quadrature 

– 90 degrees phase shift) signals.  The I and Q axes are orthogonal since their inner product is 

zero.  In other words, for any signal received, the I and Q component can be recovered.  Each 

point on the constellation diagram corresponds to a different symbol, which could represent 

multiple bits.  As the number of symbols increases, the bandwidth efficiency theoretically 

increases, but the system also becomes more susceptible to noise.  Quadrature Phase Shift 

Keying (QPSK) is a modulation scheme sometimes used in cellular phones.  Figure 26.5  

shows the constellation diagram for QPSK. 
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Figure 26.5  Impact of RMS phase Error Seen on a Constellation Diagram 

 

Consider an ideal system in which the only noise-producing component is the PLL in  the 

receiver.  In this example, the symbol corresponding to the bits (1,1) is the intended message 

indicated by the darkened circle.  However, because the PLL has a non-zero RMS phase error 

contribution, the received signal is actually the non-filled circle.   If this experiment was 

repeated, then the result would be that the phase error between the received and intended 

signal was normally distributed with a standard deviation equal to the RMS phase error.  If 

the RMS phase error of the system becomes too large, it could actually cause the message to 

be misinterpreted as (−1, 1) or (1,−1).   This constellation diagram interpretation of RMS 

phase error shows why higher order modulation schemes are more subject to the RMS phase 

error of the PLL.    A real communications system will have a noisy channel and other noisy 

components, which reduce the amount of RMS phase error of the PLL that can be tolerated.   

 

Error Vector Magnitude (EVM) 

Error Vector Magnitude is the magnitude of the vector formed from the intended message and 

the actual message received (refer to Figure 26.5 ).  This is commonly expressed as a 

percentage of the error vector relative to the vector formed between the origin and intended 

message.  Referring to Figure 26.5 , assuming the circle has radius R, and applying the law of 

cosines yields the magnitude of the error vector, E,  to be: 

 

E = 2 ∙ 𝑅2 − 2 ∙ 𝑅2 ∙ 𝑐𝑜𝑠(∅)  (26.17)  
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Assuming that f is small, and using the Taylor series expansion cos(f) = 1 − f2/2 yields the 

following relationship between RMS phase error and EVM: 

 

EVM ≈ 100% ∙ (
𝜋

180
) ∙ 𝜎∅(𝑑𝑒𝑔)  (26.18)  

 

Other Interpretations of Integrated Noise 

Eye Diagram 

The eye diagram gives an indication between the different symbols.  If the eye diagram is 

open, then the bit error rate will be small.  If it is more closed, the bit error rate will be 

increased.  Although there is not really a good term to relate RMS phase error to the eye 

diagram, the impact of the RMS phase error on the eye diagram is that it causes it to close up.  

This means that the decision region is smaller and it is more likely to make an error in which 

bits were sent. 

 

Completeness of the Phase Noise Profile 

If the phase noise profile is known, then all the integrated phase noise quantities can be 

calculated.  However, it does not work the other way around.   If the area under this profile 

can be found, there are infinitely many ways that area can be achieved.  It can be very flat, 

have a slope, or have most of the energy concentrated in one spur.  For this reason, the phase 

noise profile is always good to also have.  Nevertheless, the ease of using a single number to 

quantify phase noise performance is very practical to know and have. 

 

Unifying Theory for Integrated Phase Noise Quantities 

Most the noise quantities presented so far are related to the integrated phase noise, A.  Many 

people are familiar with interpreting this integrated phase noise in one way or another.  The 

following table gives a way to relate all these noise quantities to each other. 
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Given Quantity 

Integrated 

Phase Noise 

( A ) 

Signal to Noise 

Ratio 

( SNR ) 

RMS Phase 

Error 

( f(deg) ) 

RMS Jitter 

( t ) 

A  1
𝐴⁄  

180

𝜋
√A 

1

2𝜋𝑓
√A 

SNR 
1

𝑆𝑁𝑅
  

180

𝜋√SNR
 

1

2𝜋𝑓√SNR
 

f(deg) (
𝜋 ∙ 𝜎∅(𝑑𝑒𝑔)

180
)
2

 (
180

𝜋 ∙ 𝜎∅(𝑑𝑒𝑔)
)

2

  
1

𝑓
∙
𝜎∅(𝑑𝑒𝑔)

360
 

t (2𝜋𝑓 ∙ 𝜎𝑡)
2 (

1

2𝜋𝑓 ∙ 𝜎𝑡
)
2

 360 ∙ 𝑓 ∙ 𝜎𝑡  

Table 26.2 Unifying Formulas for Integrated Phase Noise Quantities 

 

 

RMS Frequency Error (Residual FM) 

RMS frequency error is the standard deviation of the frequency error.  Following from the 

definition of the standard deviation, the method is to integrate the phase noise times the square 

of the offset frequency.  By definition, this yields the standard deviation of the frequency error, 

or more commonly called the RMS frequency error.  This is of particular interest in 

applications involving frequency modulation.  More weight is placed at farther offset for this 

integral.  Because it has the factor of f2 under the integral sign, it does not easily relate to other 

integrated phase noise quantities.  

 

σ𝑓 = √2 ∙ ∫ 𝐿(𝑓) ∙ 𝑓2 ∙ 𝑑𝑓
𝑏

𝑎

  (26.19)  

 

Conclusion 

Integrated noise metrics such as RMS phase error, jitter, and EVM are useful as they give a 

single number that allows one to interpret the impact of phase noise on the system 

performance.  From a system perspective, it is often easier to understand the impact of an error 

in phase or time as opposed to using a phase noise profile.  All of these integrated noise metrics 

can be largely impacted by the loop bandwidth of the PLL.    
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Appendix Sample Calculations with Integrated Phase Error 

For this example, a plot was downloaded from the Agilent E4445A spectrum analyzer 

compared to what the equipment produced.  The area was calculated  numerically. 

 

Figure 26.6  Downloaded Phase Noise Profile 

 

From this phase noise, integrated phase noise quantities were calculated. 

Symbol Value Units 

f 770 MHz 

a 12 kHz 

b 100 kHz 

A 2.8438 x  10-5 n/a  

f(rad) 5.3327 x 10-3 rad 

f(deg) 0.3055 deg 

EVM 0.533 % 

t 1.1023 ps 

f 112.6556 Hz 

Table 26.3 Calculated Phase Noise Quantities 

 

These calculated results can be compared to measurements done by the instrument itself to 

verify that indeed these calculations are correct. 
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RMS Phase Error Calculation 

 

 

 

 

RMS Jitter 

 

 

 

RMS Frequency Error 

Figure 26.7  Integrated Noise Measurements 
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Chapter 27      A Sample PLL Phase Noise Analysis 

 

Setup 

This chapter goes through the same example presented in the filter analysis chapter, but now 

focuses on phase noise.  A summary of this filter is shown as follows: 

 

Symbol Description Value Units 

KPD Charge Pump Gain 5 mA 

KVCO VCO Gain 30 MHz/V 

fVCO Output Frequency 900 MHz 

fPD Phase detector frequency 200 kHz 

C1 Loop Filter Capacitor 5.600 nF 

C2 Loop Filter Capacitor 100.00 nF 

C3 Loop Filter Capacitor 0.330 nF 

C4* 
Loop Filter Capacitor 

*(Not Accounting For VCO input Capacitance) 
0.082 nF 

CVCO VCO Input Capacitance 0.022 nF 

R2 Loop Filter Resistor 1.0 kW 

R3 Loop Filter Resistor 6.8 kW 

R4 Loop Filter Resistor 33.0 kW 

N N Counter Value 4500 none 

C4 
Loop Filter Capacitor accounting for VCO input 

Capacitance 
0.104 nF 

BW Loop Bandwidth 5.0857 kHz 

f Phase Margin 50.7527 degrees 

 Gamma Optimization Parameter 1.2313 none 

Table 27.1 Loop Filter Setup from Bode Plot Chapter 

 

 

 

Symbol Description Value Units 

KPDKnee Phase noise knee current 1 mA 

PN1Hz* 1 Hz Normalized Flat Noise for infinite KPD  −214.8 dBc/Hz 

PN10kHz* 10kHz Normalized 1/f Noise for infinite KPD −101.6 dBc/Hz 

VCO_1kHz Raw VCO phase noise at  1 kHz Offset −90 dBc/Hz 

VCO_10kHz Raw VCO phase noise at 10 kHz Offset −115 kHz 

VCO_FLR VCO Phase noise at 10 MHz Offset −155 dBc/Hz 

TCXO10khz TCXO frequency @ 10 kHz offset −134 dBc/Hz 

fTCXO TCXO Frequency 20 MHz 

Table 27.2 Phase Noise Coefficients 
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TCXO Noise 

As the TCXO noise is only specified at one offset, it makes sense to model it with a slope of 

20 dB/decade and to scale to the VCO frequency. 

 

 

LTCXO(f) =  −134 − 20 ∙ 𝑙𝑜𝑔 |
𝑓

10𝑘𝐻𝑧
| + 20 ∙ 𝑙𝑜𝑔 |

𝑓𝑉𝐶𝑂

𝑓𝑇𝐶𝑋𝑂
|=−100.9 − 20 ∙

𝑙𝑜𝑔 |
𝑓

10𝑘𝐻𝑧
| 

(27.1)  

 

 

Table 27.3 TCXO Noise 
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PLL Noise 

PLL Flat Noise 

PN1Hz =  −214.8 + 10 ∙ 𝑙𝑜𝑔 |1 + 
1𝑚𝐴

5𝑚𝐴
| =  −214 (27.2)  

LPLLFlat(𝑓)  =  −214 +  10 ∙ 𝑙𝑜𝑔 |
200𝑘𝐻𝑧

1𝐻𝑧
| +  20 ∙ log(4500) =  −87.925 (27.3)  

 

 

PLL Flicker Noise 

PN10Hz =  −101.6 + 10 ∙ 𝑙𝑜𝑔 |1 + 
1𝑚𝐴

5𝑚𝐴
| =  −100.8 (27.4)  

LPLLFlicker(f) = −100.8 + 20 ∙ 𝑙𝑜𝑔 |
900𝑀𝐻𝑧

1𝐺𝐻𝑧
| − 10 ∙ 𝑙𝑜𝑔 |

𝑓

10𝑘𝐻𝑧
|  

= −101.7 − 10 ∙ 𝑙𝑜𝑔 |
𝑓

10𝑘𝐻𝑧
| 

(27.5)  

 

Total PLL Noise 

LPLL(f) = 10 ∙ 𝑙𝑜𝑔 |10(LPLLFlat
(𝑓)/10)|  +  10(LPLLFlat

(𝑓)/10) +  𝑅𝑜𝑙𝑙𝑜𝑓𝑓 (27.6)  

In the Figure 27.1 , the PLL phase noise is shown.  Note that the flicker noise can contribute 

at lower offsets, although the contribution is not that much as this is an integer PLL example.  

In the cases of a fractional PLL, the flicker noise can be much more dominant due to the higher 

phase detector frequency. 

 

Figure 27.1  PLL Phase Noise 
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VCO Phase Noise 

For the VCO phase noise decomposition, the first thing to do is to arrange the three phase 

noise points by offset in order to check the slope to determine the appropriate model.  In the 

same step, one can convert these offsets to scalar units and translate back to 1 GHz VCO 

frequency.  This is all done in the following table.  

 

Offset 

Phase 

Noise 

(dBc/Hz) 

Slope  

(dB/decade) 
Scalar Units 

f3 = 

1kHz 
−90  n/a 𝑝3 = (

1𝐺𝐻𝑧

900𝑀𝐻𝑧
)
2

∙ 10−(
90

10⁄ ) 

= 1.2345 × 10−9 

f2 = 

10kHz 
−115  

−115 − (−90)

𝑙𝑜𝑔 (
10𝑘𝐻𝑧
1𝑘𝐻𝑧

)
=  −25 𝑝2 = (

1𝐺𝐻𝑧

900𝑀𝐻𝑧
)
2

∙ 10−(
115

10⁄ ) 

= 3.90405 × 10−12 

f0 = 

10MHz 
−155  

−155 − (−115)

𝑙𝑜𝑔 (
10𝑀𝐻𝑧
10𝑘𝐻𝑧

)
=  −13 𝑝0 = (

1𝐺𝐻𝑧

900𝑀𝐻𝑧
)
2

∙ 10−(
155

10⁄ ) 

= 3.90405 × 10−16 

Table 27.4 Analysis of VCO Offsets 

 

We see that the slope from p3 to p2 is between −30 and −20 dB/decade which implies that 

this is a combination of the 1/f3 and 1/f2 noise.  The slope from p2 to p0 is between −20 to 0 

dB decade, which implies it is a combination of the 1/f2 and phase noise floor.  This therefore 

leads to a system of 3 equations and 3 unknowns. Choosing fdefault = 1 MHz and expressing in 

matrix form we get: 

 

1.2345 × 10−9      =       𝑛3 ∙ (
1𝑀𝐻𝑧

1𝑘𝐻𝑧
)
3

   +    𝑛2 ∙ (
1𝑀𝐻𝑧

1𝑘𝐻𝑧
)
2

 (27.7)  

 

3.9040 × 10−12   =       𝑛3 ∙ (
1𝑀𝐻𝑧

10𝑘𝐻𝑧
)
3

  +    𝑛2 ∙ (
1𝑀𝐻𝑧

10𝑘𝐻𝑧
)
2

 (27.8)  

 

3.90405 × 10−16 =                                             𝑛2 ∙ (
1𝑀𝐻𝑧

10𝑀𝐻𝑧
)
2

      +       𝑛0 (27.9)  
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This system of equations can be expressed in matrix form as follows: 

 

[
1.2345 × 10−9

3.9040 × 10−12

3.90405 × 10−16
] =       [

109 109 0
106 104 0
0 10−2 1

] • [
𝑛3
𝑛2
𝑛0
]               (27.10)  

 

[
𝑛3
𝑛2
𝑛0
]  =    [

109 106 0
106 104 0
0 10−2 1

]

−1

• [
1

3.9040 × 10−12

3.90405 × 10−16
]        (27.11)  

 

[
𝑛3
𝑛2
𝑛0
]  =    

1

9
∙ [
10−8 −10−6 0
−10−6 10−3 0
10−8 −10−5 9

] • [
1.2345 × 10−9

3.9040 × 10−12

3.90405 × 10−16
] =  [

9.38 × 10−19

2.97 × 10−16

3.87 × 10−16
]       (27.12)  

 

The VCO noise metrics as normalized to a 1 GHz carrier and 1 MHz offset are given as 

follows: 

Parameter Scalar Value dB Value 

n3 9.38 × 10−19 −180.3 

n2 2.97 × 10−16 −155.3 

n0 3.87 × 10−16 −154.1 

Table 27.5 VCO Noise Metrics 

 

The 1/f3 to 1/f2 corner point, which is where these two noise sources contribute equally can 

be calculated as follows: 

 

𝑓𝐶𝑜𝑟𝑛𝑒𝑟_𝐹3  =    1 𝑀𝐻𝑧 ∙
9.38 × 10−19

2.97 × 10−16
    = 3.162 𝑘𝐻𝑧   (27.13)  

 

The 1/f2 to phase noise floor corner point, which is where these two noise sources contribute 

equally can be calculated as follows: 

 

𝑓𝐶𝑜𝑟𝑛𝑒𝑟_𝐹𝐿𝑅  =    1 𝑀𝐻𝑧 ∙ √
2.97 × 10−16

3.87 × 10−16
    = 871 𝑘𝐻𝑧   (27.14)  
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The noise contribution can be translated to any offset via the formulae below: 

𝐿𝑉𝐶𝑂𝐹3(𝑓)  =   −180.3 − 30 ∙ 𝑙𝑜𝑔 (
𝑓

1 𝑀𝐻𝑧
)   (27.15)  

𝐿𝑉𝐶𝑂𝐹2(𝑓)  =   −155.3 − 20 ∙ 𝑙𝑜𝑔 (
𝑓

1 𝑀𝐻𝑧
)   (27.16)  

𝐿𝑉𝐶𝑂𝐹𝐿𝑅      =   −154.1 (27.17)  

 

The total VCO noise contribution is given by: 

 

𝐿𝑉𝐶𝑂(𝑓)  =   10 ∙ 𝑙𝑜𝑔(10𝐿𝑉𝐶𝑂𝐹3(𝑓) + 10𝐿𝑉𝐶𝑂𝐹2(𝑓) + 𝐿𝑉𝐶𝑂𝐹𝐿𝑅  ) (27.18)  

 

f 𝑳𝑽𝑪𝑶(𝒇) 𝑳𝑽𝑪𝑶𝑭𝟑(𝒇) 𝑳𝑽𝑪𝑶𝑭𝟐(𝒇) 𝑳𝑽𝑪𝑶𝑭𝑳𝑹 

1 kHz  −90 −91.22 −96.22 −155.02 

3.162 kHz  −103.20 −106.21 −106.22 −155.02 

10 kHz  −115.02 −121.21 −116.22 −155.02 

100 kHz  −136.02 −151.22 −136.22 −155.02 

871 kHz −151.00 −151.00 −155.02 −155.02 

1 MHz  −152.56 −181.22 −156.22 −155.02 

10 MHz  −155.00 −211.22 −176.22 −155.02 

Table 27.6 VCO Noise at Various Offsets 

 

 

Figure 27.2  VCO Phase Noise  
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Resistor Noises 

The general resistor noise formula is: 

 

𝑉𝑅𝑥  =   √4 ∙ 𝑇 ∙ 𝑘 ∙ 𝑅𝑥 (27.19)  

 

Symbol Description Value Units 

k Boltzmann’s Constant 1.3807 J/K 

T Ambient Temperature 300 K 

VR2 Noise Voltage Generated by Resistor R2 4.0704 
Hz

nV  

VR3 Noise Voltage Generated by Resistor R3 10.0614 
Hz

nV  

VR4 Noise Voltage Generated by Resistor R4 23.3382 
Hz

nV  

Table 27.7 Resistor Noise Calculation 

 

The transfer functions and translation of this to phase noise is presented in the resistor noises 

chapter on passive filter noise.   The filter noise contribution at various offsets can be found 

as follows: 

 

Offset 𝑳𝑭𝒊𝒍𝒕𝒆𝒓(𝒇) 𝑳𝑭𝒊𝒍𝒕𝒆𝒓𝑹𝟐(𝒇) 𝑳𝑭𝒊𝒍𝒕𝒆𝒓𝑹𝟑(𝒇) 𝑳𝑭𝒊𝒍𝒕𝒆𝒓𝑹𝟒  

1 kHz −84.0 −100.6 −91.8 −84.9 

10 kHz −82.7 −99.8 −90.5 −83.6 

100 kHz −112.7 −144.0 −124.6 −113.0 

1 MHz −151.0 < −200 −180.8 −151.0 

10 MHz −190.9 < −200 < −200 −190.9 

 

Table 27.8 Resistor Noise at Various Offsets 

 

It is often the case that the resistor closest to the VCO is the one that contributes the most to 

the loop filter noise.  In this case, it totally dominates it.  The filter noise also has a tendency 

to peak near the loop bandwidth.  Unlike the TCXO, PLL, and VCO, there is really no concept 

of unshaped loop filter noise; it only makes sense to talk about these resistor noises when the 

actual filter is known. 
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Figure 27.3  Resistor Noises 

 

Calculate Total Noise 

The total noise is the sum of the shaped TCXO, PLL, VCO, and filter.   These have all been 

computed.   

 

 

𝐿(𝑓) = 

10 ∙ 𝑙𝑜𝑔 |10(
𝐿𝑇𝑋𝐶𝑂(𝑓)

10⁄ )  +  10(
𝐿𝑃𝐿𝐿(𝑓)

10⁄ )  +  10(
𝐿𝑉𝐶𝑂(𝑓)

10⁄ )  + 10(
𝐿𝐹𝑖𝑙𝑡𝑒𝑟(𝑓)

10⁄ )|  
(27.20)  

 

Offset Total OSC PLL VCO Filter 

0.1 −60.9 −60.9 −80.8 −119.1 −103.5 

1 −77.8 −80.1 −85.6 −108.6 −84.0 

10 −82.2 −104.8 −91.6 −112.0 −82.7 

100 −112.7 −171.0 −138.0 −136.0 −112.7 

1000 −148.7 < −200 < −200 −152.6 −151.0 

10000 −155.0 < −200 < −200 −155.0 −190.9 

Table 27.9 Total Phase Noise 
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Table 27.10 Total Noise Analysis 

 

In this case, the loop filter is dominating the phase noise.  This is not typically the case but 

happens here because the low phase detector causes the filter resistors to be unnecessarily 

large.   In this case, a second order loop filter would have likely been just as good for spurs 

and the resistor noise could have been virtually eliminated.  The following integrated metrics 

have also been calculated from a bandwidth of 1.7 kHz to 200 kHz. 

 

 

Parameter Value 

Jitter 3.2 ps 

RMS Phase Error 1.04 degrees 

Error Vector 

Magnitude 
0.0002 % 

Table 27.11 Calculated Integrted Metrics 

 

 

Conclusion 

The phase noise analysis has been presented in this chapter.  The purpose of this analysis was 

not a reference design that is intended to be copied, but rather to show how to use the equations 

to calculate the phase noise. 
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Chapter 28      Transient Response of PLL Frequency Synthesizers 

 

Introduction 

This chapter considers the frequency response of a PLL when the N divider is changed.  The 

phase detector is modeled as having a continuous analog output and it is assumed that the 

system is ideal; other factors will be discussed in later chapters.  It starts out with the derivation 

of traditional second order approximations involving the natural frequency and damping 

factor and then relates them to phase margin and loop bandwidth.  However, as these 

approximations are limited in accuracy, a more accurate higher order fourth order model 

involving the zero and all the poles is derived. 

    

Derivation of Transfer Functions 

The filter coefficients A0, A1, A2, and A3 were discussed in a previous chapter.  Recall that 

the transfer function of the loop filter is as follows: 

 

𝑍(𝑠)  =   
1 + 𝑠 ∙ 𝑇2

𝑠 ∙ [𝐴3 ∙ 𝑠3 + 𝐴2 ∙ 𝑠2 + 𝐴1 ∙ 𝑠 + 𝐴0]
 (28.1)  

 

This leads to the following closed-loop transfer function: 

 

𝐶𝐿(𝑠)  =   
𝐾 ∙ 𝑁 ∙ (1 + 𝑠 ∙ 𝑇2)

𝐴3 ∙ 𝑠5 + 𝐴2 ∙ 𝑠4 + 𝐴1 ∙ 𝑠3 + 𝐴0 ∙ 𝑠2 + 𝐾 ∙ 𝑇2 ∙ 𝑠 + 𝐾
 (28.2)  

 

𝐾 =   
𝐾𝑃𝐷 ∙ 𝐾𝑉𝐶𝑂

𝑁
 (28.3)  

 

It should be noted that the N value to use in this equation is the N value corresponding to the 

final frequency value, not the initial frequency value or the frequency for which the loop filter 

was designed for.   
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Second Order Approximation to Transient Response 

Classical PLL Transient Model 
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Figure 28.1  Classical Model for the Transient Response of a PLL 

 

Figure 28.1  relates the PLL switching from frequency f1 to frequency f2 to classical control 

loop theory.  The time that it takes the PLL to reach the intended frequency is called the rise 

time.    The time that this takes is called the peak time The PLL will then continue on until it 

reaches the peak frequency.  The absolute value of the difference of the peak frequency and 

final frequency is known as overshoot.  From there, there will be damping and potential 

ringing until it reaches its final frequency.  The absolute value of the difference of the start 

frequency and end frequency is called the frequency jump and the acceptable error to within 

which the PLL is considered to be locked is called the tolerance. 
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Derivation of Equations 

To this point, no approximations have been made, and this form works up to a fourth order 

loop filter.  In this section, CL(s) will be approximated by a second order expression, in order 

to derive results that give an intuitive feel of the transient response.  The simplified second 

order expression for (28.2) involves neglecting the zero and higher order poles.   

 

𝐶𝐿(𝑠) ≈  
𝑁 ∙ 𝜔𝑛

2

𝑠2 + 2 ∙ 𝜁 ∙ 𝜔𝑛 ∙ 𝑠 + 𝜔𝑛2
 (28.4)  

 

This assumes the following definitions. 

 

𝜔𝑛 =  √
𝐾𝑃𝐷 ∙ 𝐾𝑉𝐶𝑂
𝑁 ∙ 𝐴0

 (28.5)  

 

𝜁 =  
𝑇2

2
∙ 𝜔𝑛 (28.6)  

 

Assuming that  𝜁 < 1, the poles of this function are at: 

 

−𝜁 ∙ 𝜔𝑛  ± 𝑗 ∙ 𝜔𝑛 ∙ √1 − 𝜁2 (28.7)  

 

Now consider a PLL, which is initially locked at frequency f1, and then the N counter is 

changed such to cause the PLL to switch to frequency f2.  This event is equivalent to changing 

the reference frequency from f1/N to f2/N, or multiplying (28.4) by a factor of  (f2−f1)/(N∙s).   

Using inverse Laplace transforms, it follows that the frequency response is: 

 

𝐹(𝑡) = 𝑓2 + (𝑓1 − 𝑓2) ∙ 𝑒−𝜁∙𝜔𝑛∙𝑡 ∙ [cos (𝜔𝑛√1 − 𝜁2 ∙ 𝑡) +
𝜁

√1 − 𝜁2
∙ sin (𝜔𝑛√1 − 𝜁

2 ∙ 𝑡)] (28.8)  

 

To find the peak time, take the derivative of (28.8) and set to zero.  This yields the following equation.  

 

𝑃𝑒𝑎𝑘𝑇𝑖𝑚𝑒 =   
𝜋

𝜔𝑛 ∙ √1 − 𝜁2
 (28.9)  

 



   250         Transient Response of PLL Frequency Synthesizers 

                              

The peak frequency can be found by substituting this expression for peak time into (28.8).  The 

overshoot is found by subtracting the final frequency away from the peak frequency.  

   

𝑂𝑣𝑒𝑟𝑠ℎ𝑜𝑜𝑡 =  
𝑓2 − 𝑓1

√1 − 𝜁2
∙ exp (

−𝜁 ∙ 𝜋

√1 − 𝜁2
) (28.10)  

 

The rise time is defined as the time when the PLL first reaches its final frequency, which can be found 

by setting the bracketed portion of (28.8) equal to zero and choosing the smallest positive result for 

the arctangent function. 

 

𝑅𝑖𝑠𝑒𝑇𝑖𝑚𝑒 =   

tan−1 (
−√1 − 𝜁2

𝜁 )

𝜔𝑛√1 − 𝜁2
 

(28.11)  

 

To find the lock time, one first calculates the exponential envelope.  This is first done by setting the 

derivative of expression in brackets in (28.8)  to zero.  Then this result is substituted back into this to 

find the following maximum value 

 

𝑀𝑎𝑥 {  cos (𝜔𝑛√1 − 𝜁2 ∙ 𝑡) +
𝜁

√1 − 𝜁2
∙ sin (𝜔𝑛√1 − 𝜁2 ∙ 𝑡) }  =   

1

√1 − 𝜁2
 (28.12)   

 

Substituting this back into (28.8) and solving for the time yields the following expression for lock 

time. 

 

𝐿𝑜𝑐𝑘 𝑇𝑖𝑚𝑒 =  

−𝑙𝑛 (
𝑡𝑜𝑙𝑒𝑟𝑎𝑛𝑐𝑒 ∙ √1 − 𝜁2

|𝑓2 − 𝑓1|
)

𝜁 ∙ 𝜔𝑛
 

(28.13) 

 

The reader should be aware that although these equations are nice closed form solutions, they 

are based on approximations and of limited accuracy. 
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Relating the Second Order Analysis to Reality 

These formulae for the second order are presented not for their stunning accuracy, but rather 

so that the PLL transient response can be better related to traditional textbook theory.  The 

closed loop formulas are easy to use with a convenient closed form derivation.  However, the 

convenient derivation comes by neglecting the zero and some poles, which limits the 

accuracy.   

The impact of neglecting the zero, T2, has the effect of sacrificing accuracy for the initial part 

of the lock time.  This can be reasoned from the initial value theorem. 

 

lim
𝑠→∞

𝑠 ∙ 𝐹(𝑠) =  𝑓(0+) (28.14) 

 

The zero will become a dominant term and it has a large impact on the peak time and 

overshoot.  The impact of neglecting this has a tendency to underestimate the overshoot and 

cause the equations to be off for the peak time. 

The impact of neglecting the extra poles has the impact of causing the long term behavior to 

be off, which would translate to inaccuracies in lock time.  This can be reasoned by the final 

value theorem. 

 

lim
𝑠→0

𝑠 ∙ 𝐹(𝑠) =  𝑓(∞) (28.15) 

 

 

In other words, these formulae are intended to be used in a casual sort of way and one should 

not let them instill a false sense of confidence.  In the following section, the full simulation 

presented proves to be much more accurate.  If the extra calculations prove to be inconvenient, 

there are also some quick rules of thumb based on phase margin and loop bandwidth that are 

presented that tend to give a better match to reality than the second order approximations. 
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Relationship between Phase Margin, Loop Bandwidth, Damping Factor, and Natural 

Frequency 

For a second order filter, the following relationships exist for loop filters designed with =1, 

which is not always the case, but a fair assumption 

 

𝜔𝑐 = 2𝜋 ∙ 𝐵𝑊 =  2 ∙ 𝜁 ∙ 𝜔𝑛 (28.16)  

 

𝑠𝑒𝑐𝜙 − 𝑡𝑎𝑛𝜙 =  
1

4 ∙ 𝜁2
 (28.17)  

 

Phase Margin, f Damping Factor,  Natural Frequency, n 

30.00 degrees 0.6580 0.7599∙c 

35.00 degrees 0.6930 0.7215∙c 

36.87 degrees 0.7071 0.7071∙c 

40.00 degrees 0.7322 0.6829∙c 

45.00 degrees 0.7769 0.6436∙c 

50.00 degrees 0.8288 0.6033∙c 

55.00 degrees 0.8904 0.5615∙c 

60.00 degrees 0.9659 0.5177∙c 

61.93 degrees 1.0000 0.5000∙c 

65.00 degrees 1.0619 0.4709∙c 

70.00 degrees 1.1907 0.4199∙c 

Table 28.1 Relationship between Phase Margin, Damping Factor and Natural Frequency 

 

So by specifying the loop bandwidth in radians, c, and the phase margin, f, the damping 

factor and natural frequency can be determined, and vice versa.  As a matter of fact, one can 

re-define the damping factor and natural frequency based on the loop bandwidth and phase 

margin.  Although these equations do not exactly coincide with (28.5) and (28.6) they are 

often used. 

 

𝜁 =  
1

2 ∙ √𝑠𝑒𝑐𝜙 − 𝑡𝑎𝑛𝜙
 (28.18)  

 

𝜔𝑛 = 
ωc

2 ∙ 𝜁
 (28.19)  
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Fourth Order Transient Analysis 

This analysis considers all the poles and zeros of the transfer function and gives the most 

accurate results.   To start with, the transfer function in (28.2) is multiplied by (f2−f1)/(N∙s). 

However, since these formulas are really referring to the phase response, and it is the 

frequency response that is sought, the whole transfer function is also multiplied by s to 

perform differentiation (frequency is the derivative of phase).  The resulting expression is 

rewritten in the following form: 

 

𝐹(𝑠) = 𝑠 ∙ 𝐶𝐿(𝑠) ∙
𝑓2 − 𝑓1

𝑁 ∙ 𝑠
=  

𝐾 ∙ (𝑓2 − 𝑓1) ∙ (1 + 𝑠 ∙ 𝑇2)

𝐴3 ∙ 𝑠5 + 𝐴2 ∙ 𝑠4 + 𝐴1 ∙ 𝑠3 + 𝐴0 ∙ 𝑠2 +𝐾 ∙ 𝑇2 ∙ 𝑠 + 𝐾
 (28.20)  

 

The challenge is finding the poles of the closed loop transfer function.  The polynomial can 

be up to fifth order, depending on the loop filter order.  Abel’s Impossibility Theorem states 

that a closed form solution for polynomials of fifth and higher order cannot exist.  Closed 

form solutions do exist for polynomials of fourth and lower order, although the fourth and 

third order equations are rather complicated.  If the means are not available to solve for the 

poles, then one can approximate by reducing the order of the polynomial, until it is solvable. 

The roots of the denominator correspond to the poles of the closed loop transfer function.  For 

a loop filter of third order or lower, a closed form solution exists to find the poles.  If the loop 

filter is fourth order, the polynomial is fifth order, the options are to use numerical methods 

to find the poles, or to approximate this as a fourth order polynomial by neglecting the highest 

order term.  The transient response can be rewritten as follows. 

 

𝐹(𝑠) =∑𝐵𝑘

4∗

𝑖=0

∙ [
1

𝑠 ∙ (𝑠 − 𝑝𝑖)
+ 

𝑇2

𝑠 − 𝑝𝑖
] (28.21)  

𝐵𝑘 = 
𝐾 ∙ (𝑓2 − 𝑓1)

𝐴3 ∗
∙∏

1

𝑝𝑖 − 𝑝𝑘
𝑘≠𝑖

 (28.22)  

 

The above formulas are for the fourth order filter, but are easily modified for lower order 

filters. For a third order filter, the summation index goes to 3 and the denominator for the 

coefficients is A2.  For a second order filter, the summation index goes to 2 and the 

denominator for the coefficients is A1.  Some of the coefficients Bi will be complex; however, 

they will combine in such a way that the final solution is real.  Now since the poles need to be 

calculated for this, it will be assumed that they all have negative real parts.  If this is not the 

case, then the design is unstable.   Using this assumption that the design is stable, the transient 

response can be simplified.  Also, if the simulator does not do this, the solution can be 

expressed with all real variables by applying Euler’s formula: 
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𝑒𝛼+𝑗∙𝛽 = 𝑒𝛼 ∙ (𝑐𝑜𝑠𝛽 + 𝑗 ∙ 𝑠𝑖𝑛𝛽) (28.23)  

 

Assuming a stable system, the transient response is: 

 

𝑓(𝑡) = 𝑓2 + ∑𝐵𝑖

4∗

𝑖=0

∙ exp (𝑝𝑖 ∙ 𝑡) ∙ (
1

𝑝𝑖
+ 𝑇2) (28.24)  

 

Additional Comments Regarding the Lock Time Formula 

Understanding the Transient Curve and Phase Error 

One observation regarding the transient curve is that the area above the final frequency will 

be equal to the area below the transient frequency. 
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Figure 28.2  Area under Transient Curve 

 

This is not a coincidence as phase is the integral of frequency and the PLL locks to phase.  

The exceptions to this rule can be when the PLL does not fully track the phase all the time, 

such as the case with cycle slipping or VCO calibration.  These topics are discussed in later 

chapters. 

 

Using the Exponential Envelope 

(28.24) provides a complete analysis for the transient response, including all of the ringing of 

the PLL.  However, for the purposes of lock time determination, it is better to eliminate the 

ringing from the equation and study only the exponential envelope.  This makes the prediction 

of lock time more consistent.  The exponential envelope is obtained by applying the triangle 

inequality to (28.24). 
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𝐸𝑥𝑝𝑜𝑛𝑒𝑛𝑡𝑖𝑎𝑙 𝐸𝑛𝑣𝑒𝑙𝑜𝑝𝑒 = 𝑓2 + ∑|𝐵𝑖 ∙ exp (𝑝𝑖 ∙ 𝑡) ∙ (
1

𝑝𝑖
+ 𝑇2)|

4∗

𝑖=0

 (28.25)  

 

Dependence of Lock Time on Loop Bandwidth 

Consider two loop filters that are designed for the same parameters, except for the second loop 

filter has a loop bandwidth of M times the loop bandwidth of the first filter.  In this case, the 

scaling rule for loop filters apples.  All the resistor values in the second filter will be M times 

the resistor values in the first filter and the capacitors values in the second filter will be 1/M2 

times the capacitor values of the first filter.  Substituting this in for the definition of the filter 

coefficients yields the result that T2 will be multiplied by a factor of 1/M, A0 will be 

multiplied by 1/M2, A1 by 1/M3, A2 by 1/M4, and A3 by 1/M5.  It therefore follows that if p 

which makes the denominator in equation (28.20) equal to zero for the first filter, then M∙p 

will make the denominator equal to zero for the second filter.   Combining this information 

with formula (28.22) yields the result that the coefficients Bi are multiplied by a factor of M.  

Looking at formula (28.24), the factors of M all cancel out, except in the exponent.  This 

proves that the transient response for the second loop filter will be identical to that of the first, 

except for the time axis is scaled by a factor of 1/M.  The grand result of all this analysis is 

that it proves that the lock time is inversely proportional to the loop bandwidth, and that the 

overshoot (undershoot) will theoretically remain exactly the same.    

 

Dependence of Lock Time on the Frequency Jump 

The quantity |f2 − f1| is the frequency jump.  Now consider the same loop filter.  For the first 

lock time measurement, the transient response is recorded.  For the second lock time 

measurement, the final frequency, f2, is kept constant, but the initial frequency, f1, is changed 

such that the frequency jump is increased by a factor of M, equation (28.22) and (28.24) will 

be the same for both cases, except for the fact that the coefficients for Ai in the second case 

will be multiplied by a factor of M.  This implies that the transient response will be the same 

for both cases, except for in the second case, the ringing is multiplied by a factor of M.  If the 

frequency tolerance is also scaled by a factor of M, then the lock time will also be the same.  

If it is not scaled, then the lock time will be longer, provided M>1. 
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Coarse Rules of Thumb for Lock time 

Although (28.24) is very complete, it is difficult to apply without the aid of computers.  It has 

been shown that lock time is inversely proportional to the loop bandwidth and that the lock 

time does not change if the frequency jump and frequency tolerance are scaled in equal 

amounts.  Simulations also show optimal lock time occurs with a phase margin around 48 

degrees. After running many simulations and seeing general trends, some very simple rules of 

thumb can be derived that are easy to use for fast approximations. 

   

𝐿𝑜𝑐𝑘 𝑇𝑖𝑚𝑒 ≈  
4

𝐵𝑊
 (28.26)  

 

𝑃𝑒𝑎𝑘 𝑇𝑖𝑚𝑒 ≈  
0.8

𝐵𝑊
 (28.27)  

 

𝑂𝑣𝑒𝑟𝑠ℎ𝑜𝑜𝑡 ≈  
|𝑓2 − 𝑓1|

3
 (28.28)  

 

Simulation vs. Measured Results 

Figure 28.5 and Figure 28.6 show the simulated and measured results.  Care was taken to 

ensure that sources of error were eliminated including C0G capacitors, accounting for the 

VCO input capacitance, measuring the VCO gain, and keeping the charge pump voltage away 

from the supply rails.  When capacitor C2 was changed to X7R dielectric, the lock time 

increased from 489 ms to 578 ms.   

 

Parameter 
2nd Order 

Approximation 

Coarse 

Rules 

Full 

Simulation 

Actual 

Measurement 

Parameters 
 = 0.815 

n = 3.069 kHz 

BW = 5 kHz 

f = 48.77 deg 
n/a n/a 

Rise Time (ms) 210 n/a 48.5 ~50 

Peak Time 

(MHz) 
266 160 93 90 

Peak Frequency 

(MHz) 
905.3 908.3 908 908 

Overshoot 

(MHz) 
0.3 3.3 3 3 

Lock Time (ms) 636 800 

446 (actual) 

485 

(envelope) 

489 

Table 28.2 Simulated and Calculated Lock Time Comparison 
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Figure 28.3  Theoretical Peak Time of 93 ms to Peak Frequency of 908 MHz 

 

 

 

 

Figure 28.4  Actual Peak Time of 90 ms to Peak Frequency of 908 MHz 
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Figure 28.5  Theoretical Lock Time to 1 kHz Tolerance is 446 ms 

 

 

 

Figure 28.6  Actual Lock Time to 1 kHz Tolerance is 449 ms 
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Factors that Can Degrade Lock Time 

Simulations are only as good as the information that goes into them.  The model presented 

does a perfect job at modeling the transient response given the assumptions it was based on.  

In cases where the simulation does not match the measurement, it makes sense to investigate 

some of the factors that the model does not account for, which is discussed in the next several 

paragraphs. 

 

VCO and Charge Pump Non-linearity 

Perhaps the biggest real-world effect that could throw off this analysis is the non-linear 

characteristics of the VCO and the charge pump.  When switching from one frequency to 

another, there is typically an overshot in the order of one third of the frequency jump.  This 

overshoot is dependent on the phase margin/damping factor.  If the VCO overshoots too far 

past its intended range for usage, or if the tuning voltage ever gets too close (about 0.5 V) to 

the supply rails for the charge pump, the first lobe of the transient response gets longer and 

increases the lock time.  The designer should be aware that if overshoot causes the frequency 

to go outside the tuning range of the VCO, the modeled prediction could lose accuracy.  To 

deal with this, design for a higher phase margin in order to decrease the overshoot.  

 

VCO Input Capacitance 

The VCO input capacitance adds in parallel with the capacitor that it is next to.  If not 

accounted for, this could distort the results.  This tends to decrease the loop bandwidth, and 

therefore increases the lock time. 

 

Capacitor Dielectric Absorption 

The simulations presented in this chapter assume ideal capacitors.  In addition to real world 

capacitors not being exactly on the correct value, they have other undesired properties.  

Dielectric absorption is a property of capacitors.  In order to test dielectric absorption, a 

voltage is applied, and then a short is placed across the capacitor and removed.  Parts with a 

low dielectric absorption will have a smaller residual voltage develop across than ones with a 

larger dielectric absorption.  Dielectrics such as NP0 and Film have good performance in this 

respect.  However, for larger capacitor values, it is often necessary to use a lower performance 

dielectric like X7R.  These dielectrics can drastically increase lock times.  Some PLL designs 

seem completely immune to the impact of dielectrics, while others can have the lock time 

double or increase even more.    If the actual lock time is substantially longer than the 

theoretical lock time, then replace the capacitors, especially capacitor C2, with ones of higher 

quality.  For the example previously given, using a higher dielectric absorption capacitor for 

component C2 increased the lock time from 489 ms to 578 ms. 
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Phase Detector Discrete Sampling Effects 

The discrete sampling effects of the phase detector usually have little bearing on the lock time, 

provided that the phase detector frequency is larger than about 10 times the loop bandwidth 

and less than 100 times the loop bandwidth.  Nevertheless, there are those situations where 

these factors are important.  The discrete time model is presented in a later chapter.  Although, 

the discrete model is more accurate, the analog model presented in this chapter is still very 

useful because it is much faster to calculate and gives one a better insight into what impacts 

the lock time without relying completely on computer simulations. 

When an instantaneous phase error is presented to the phase detector, then cycle slipping can 

occur.  When the N divider value changes, then the phase of the VCO signal divided by N will 

initially be incorrect in relation to the crystal reference signal divided by R.  If the loop 

bandwidth is very small (around 1%) relative to the phase detector frequency, then this phase 

error will accumulate faster than the PLL can correct for it and eventually cause the phase 

detector to put out a current correction of the wrong polarity.  By dividing the phase detector 

frequency by the instantaneous phase error presented to the phase detector, one can 

approximate how many cycles it would take the phase detector to cycle slip.  If this time is 

less than about half the rise time of the PLL, then cycle slipping is likely to occur.  An easier 

rule of thumb that is less accurate is that cycle slipping tends to occur when the loop bandwidth 

is less than 1% of the phase detector frequency.  Cycle slips are somewhat rare in integer PLL 

designs, but are common with fractional N PLL designs, since they typically run at higher 

comparison frequencies.  Many PLLs from Texas Instruments have features such as cycle slip 

reduction and Fastlock that reduce the effects of cycle slipping significantly or even 

completely. 

 

Other Comments 

There are some other factors that can have a lesser impact on lock time.  Charge pump 

mismatch and charge pump leakage can slow lock time, but only if they are severe.  Some 

capacitors or VCOs can have leakage that can also slow lock time.   

 

Conclusion 

This chapter has gone through a rigorous derivation of the equations involved in predicting 

lock time and the transient response of the PLL when the N divider is changed.  A second 

order and a fourth order model were presented.   For the fourth order model, discrepancies 

between theoretical lock times and measured lock times are on the order of 10 to 20% or less.  

If theoretical lock times and measured lock times closely agree, then this indicates that this is 

the best the PLL can do.  However, if there is a large discrepancy, it makes sense to check and 

make sure that there is not some factor that is making the lock time worse than it could be. 
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Appendix 

The Relationship between Natural Frequency (n), Damping Factor (), Loop Bandwidth  

(c) , and Phase Margin (f) 

The strategy for this derivation is to eliminate the parameters T1, T2, A0, and A1 in order to 

find the desired relationship.  These are all under the assumption that gamma is unity. 

 

𝛾 =  𝜔𝑐2 ∙ 𝑇2 ∙
𝐴1

𝐴0
 ≈ 1 (28.29)  

 

𝜁 =  
𝑇2

2
∙ 𝜔𝑛 (28.30)  

 

𝜔𝑛 = √
𝐾𝑃𝐷 ∙ 𝐾𝑉𝐶𝑂
𝑁 ∙ 𝐴0

 
(28.31)  

 

𝐾𝑃𝐷 ∙ 𝐾𝑉𝐶𝑂
𝑁 ∙ 𝜔𝑐2 ∙ 𝐴0

∙ √
1 + 𝜔𝑐2 ∙ 𝑇22

1 + 𝜔𝑐2 ∙ 𝑇12
= 1 (28.32)  

 

𝜋 − 𝑡𝑎𝑛−1(𝜔𝑐 ∙ 𝑇2) + 𝑡𝑎𝑛−1(𝜔𝑐 ∙ 𝑇1) = 𝜙 (28.33)  

 

𝐴1

𝐴0
= 𝑇1 (28.34)  

 

Eliminating A1 and A0 yields the following new equations: 

 

 𝜔𝑐2 ∙ 𝑇2 ∙ 𝑇1 = 1 (28.35)  

 

𝜁 =  
𝑇2

2
∙ 𝜔𝑛 (28.36)  

 

𝜔𝑛
2

𝜔𝑐2
∙ √
1 + 𝜔𝑐2 ∙ 𝑇22

1 + 𝜔𝑐2 ∙ 𝑇12
= 1 (28.37)  
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𝑇1 =  
𝑠𝑒𝑐𝜙 − 𝑡𝑎𝑛𝜙

𝜔𝑐
 (28.38)  

 

T2 and T1 can be eliminated as follows: 

 

𝑇2 =  
2 ∙ 𝜁

𝜔𝑛
 (28.39)  

 

𝑇1 =  
𝜔𝑛

2 ∙ 𝜁 ∙ 𝜔𝑐2
 (28.40)  

 

These values can be substituted in: 

 

[4 ∙ 𝜁2 ∙ (
𝜔𝑛
𝜔𝑐
)
2

− 1] + [(
𝜔𝑛
𝜔𝑐
)
4

− 
1

4 ∙ 𝜁2
∙ (
𝜔𝑛
𝜔𝑐
)
2

] = 0 (28.41)  

 

This can be written as follows: 

 

[4 ∙ 𝜁2 ∙ (
𝜔𝑛
𝜔𝑐
)
2

− 1] ∙ [1 +
1

4 ∙ 𝜁2
∙ (
𝜔𝑛
𝜔𝑐
)
2

] = 0 (28.42) 

 

Looking at the bracketed left hand term and solving: 

 

𝜔𝑛
𝜔𝑐

=
1

2 ∙ 𝜁
       ⇒   𝜔𝑐 =  2 ∙ 𝜁 ∙  𝜔𝑛  (28.43)  

 

This result can be combined with other equations to find the relationship for phase margin. 

 

𝑠𝑒𝑐𝜙 − 𝑡𝑎𝑛𝜙 =   
1

4 ∙ 𝜁2
  (28.44)  
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Appendix B Calculations for Transient Response 

 

Introduction 

Parameter Description Value Unit 

KPD Charge Pump Gain 1 mA 

KVCO VCO Gain 18 MHz/V 

fPD Phase Detector Frequency 200 kHz 

N Feedback Divide 4525 n/a 

f2 Final Frequency 905 MHz 

f1 Starting Frequency 895 MHz 

C1 Loop Filter Capacitor 0.47 pF 

C2 Loop Filter Capacitor 10 nF 

C3* 
Loop Filter Capacitor 

(excluding VCO Input Capacitance) 
0.180 nF 

CVCO VCO Input Capacitance 0.047 nF 

C3 
Loop Filter Capacitor  

(including VCO Input Capacitance) 
0.227 nF 

R2 Loop Filter Resistor 8.2 kW 

R3 Loop Filter Resistor 27 kW 

Tolerance Acceptable frequency error 1 kHz 

 

The first step is to define the following constants.  Be aware that the frequency used to 

calculate the N value is the final frequency. 

𝑁 =  
𝑓2
𝑓𝑃𝐷

  (28.45)  

 

𝐾 =  
𝐾𝑃𝐷 ∙ 𝐾𝑉𝐶𝑂

𝑁
  (28.46)  

𝑇2 =  
𝐾𝑃𝐷 ∙ 𝐾𝑉𝐶𝑂

𝑁
  (28.47)  

 

𝐴0 =  𝐶1 + 𝐶2 + 𝐶3 (28.48)  

 

𝐴1 =  𝐶2 ∙ 𝑅2 ∙ (𝐶1 + 𝐶3) + 𝐶3 ∙ 𝑅3 ∙ (𝐶1 + 𝐶2) (28.49)  

 

𝐴2 =  𝐶1 ∙ 𝐶2 ∙ 𝐶3 ∙ 𝑅2 ∙ 𝑅3 ∙ 𝑅4  (28.50)  
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Symbol Description Value Units 

N N Value for final settling frequency 4575 n/a 

K Constant 3.978 
1

𝑠 ∙ Ω
 

T2 Loop Filter Zero 8.2  × 10-5 s 

A0 Loop Filter Constant 10.697 nF 

A1 Loop Filter Constant 1.213  × 10-4 s∙nF 

A2 Loop Filter Constant 2.362  × 10-10 s2∙nF 

 

The loop bandwidth, phase margin, and gamma are calculated with the methods presented so 

far.   

 

Symbol Description Value Units 

BW Loop Bandwidth in kHz 5 kHz 

c Loop Bandwidth in radian 795.85 rad 

f Phase Margin 48.77 deg 

 Gamma Optimization Factor 0.9181 n/a 

 

Second Order Approximation 

The damping factor and natural frequency can also be calculated directly from components. 

 

𝜔𝑛  =   √
𝐾𝑃𝐷 ∙ 𝐾𝑉𝐶𝑂
𝑁 ∙ 𝐴0

 (28.51)  

 

𝜁 =  
𝑇2

2
∙ 𝜔𝑛 (28.52)  

 

Once these are known, the second order calculations can be easily done. 

 

𝑃𝑒𝑎𝑘𝑇𝑖𝑚𝑒 =   
𝜋

𝜔𝑛 ∙ √1 − 𝜁2
 (28.53)  

   

𝑂𝑣𝑒𝑟𝑠ℎ𝑜𝑜𝑡 =  
𝑓2 − 𝑓1

√1 − 𝜁2
∙ exp (

−𝜁 ∙ 𝜋

√1 − 𝜁2
) (28.54)  
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𝑅𝑖𝑠𝑒𝑇𝑖𝑚𝑒 =   

tan−1 (
−√1 − 𝜁2

𝜁 )

𝜔𝑛√1 − 𝜁2
 

(28.55)  

 

𝐿𝑜𝑐𝑘 𝑇𝑖𝑚𝑒 =  

−𝑙𝑛 (
𝑡𝑜𝑙𝑒𝑟𝑎𝑛𝑐𝑒 ∙ √1 − 𝜁2

|𝑓2 − 𝑓1|
)

𝜁 ∙ 𝜔𝑛
 

(28.56) 

 

Parameter 2nd Order Approximation Units 

 0.815 n/a 

n 3.069 kHz 

Rise Time 210 ms 

Peak Time  266 MHz 

Peak Frequency 905.3 MHz 

Overshoot 0.3 MHz 

Lock Time  636 ms 

 

The next step is to find the poles of the closed loop transfer function.  In this case, it would 

involve solving a fourth order polynomial.   

 

𝐴2 ∙ 𝑝4 +  𝐴1 ∙ 𝑝3 +  𝐴0 ∙ 𝑝2 +  𝐾 ∙ 𝑇2 ∙ 𝑝 +  𝐾 (28.57)  

 

Symbol Description Value Units 

2TK   Constant 3.262  × 10-4 
1

Ω
 

p0 

Closed Loop 

Transfer Function 

Pole 

−4.115  × 105 rad/s 

p1 

Closed Loop 

Transfer Function 

Pole 

−5.385× 104 rad/s 

p2 

Closed Loop 

Transfer Function 

Pole 

−2.189 ×104    − j∙1.49 ×104
 

rad/s 

p3 

Closed Loop 

Transfer Function 

Pole 

−2.189 ×104    + j∙1.49 ×104 rad/s 
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Calculate the Closed Loop Transfer Function Constants 

 

𝐵0 =
𝐾 ∙ (𝑓2 − 𝑓1)

𝐴2 ∙ (𝑝0 − 𝑝1) ∙ (𝑝0 − 𝑝2) ∙ (𝑝0 − 𝑝3)
 (28.58)   

 

𝐵1 =
𝐾 ∙ (𝑓2 − 𝑓1)

𝐴2 ∙ (𝑝1 − 𝑝0) ∙ (𝑝1 − 𝑝2) ∙ (𝑝1 − 𝑝3)
 (28.59)  

 

𝐵2 =
𝐾 ∙ (𝑓2 − 𝑓1)

𝐴2 ∙ (𝑝2 − 𝑝0) ∙ (𝑝2 − 𝑝1) ∙ (𝑝2 − 𝑝3)
 (28.60)  

 

𝐵3 =
𝐾 ∙ (𝑓2 − 𝑓1)

𝐴2 ∙ (𝑝3 − 𝑝0) ∙ (𝑝3 − 𝑝1) ∙ (𝑝3 − 𝑝2)
 (28.61)  

 

 

Symbol Description Value Units 

B0 Transient Function Constant −3.137  × 109 
1

𝑠2
 

B1 Transient Function Constant 3.074  × 1011 
1

𝑠2
 

B2 Transient Function Constant −1.521 ×1011   +  j∙3.35 ×1011 1

𝑠2
 

B3 Transient Function Constant −1.521 ×1011 −  j∙3.35 ×104 1

𝑠2
 

 

Calculate the Transient Response and Exponential Envelope 

The transient response F(t) and the exponential envelope, E(t) can now be calculated. 

 

𝐹(𝑡) = 𝑓2 + ∑𝐵𝑖

3

𝑖=0

∙ (
1

𝑝𝑖
+ 𝑇2) ∙ exp (𝑝𝑖 ∙ 𝑡) (28.62)  

 

𝐸(𝑡) = 𝑓2 + ∑|𝐵𝑖 (
1

𝑝𝑖
+ 𝑇2) ∙ exp (𝑝𝑖 ∙ 𝑡)|

3

𝑖=0

 (28.63)  
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Chapter 29      Transient Response with PFD Discrete Sampling 

Effects  

 

Introduction 

The analog model for the transient response assumes that the charge pump puts out a 

continuous current that is proportional to the phase error.  This model serves as a good 

approximation provided that the loop bandwidth of the PLL is between one-tenth and one-

hundredth of the phase detector frequency.  In cases where this is violated, it becomes more 

important to account for the discrete sampling effects of the charge pump by modeling the 

output as a pulse width modulated signal as opposed to a continuous analog current.  This 

chapter models the lock time in a discrete fashion and investigates some of the discrete effects 

of the charge pump on lock time. 

 

High Level Overview of the Model Derivation 

The discrete lock time model for lock time is well suited for computer modeling because it 

creates a set of difference equations.  These are the steps used in deriving the model. 

• Define all voltages across the capacitors 

• Derive the differential equations involved 

• Convert the differential equations to difference equations 

• Solve the system by incrementing in small discrete time steps 

 

Deriving the Nomenclature 

Although a trivial step, defining the problem in the right way simplifies the analysis.  The 

easiest convention to use is to define all the voltages to be across the capacitors, and all the 

currents to be through the capacitors.  For instance, V1 stands for the voltage across capacitor 

C1, and i1 stands for the current through capacitor C1.  Once this is done, the equations are 

easy to derive. 

 

Deriving the Equations for the Brute Force Method 

The first step is to initialize all voltages to zero.  This corresponds to initializing the problem 

so that the PLL is considered to  be locked before the frequency change is initiated.  The next 

thing that needs to be done is to derive equations to calculate the new change in voltages from 

the old voltages.  These voltages are added to the old voltages in order to compute the new 

voltages.  The new VCO frequency can be calculated from this, and from the VCO frequency, 

the new phase at the N counter can be calculated.  It simplifies things to think of this phase in 

terms of cycles, not radians.  This phase can be calculated by adding the product of the time 

step times the frequency.  From this, the charge pump state can be calculated and then the 

whole process is repeated for the next time step. 
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Step 1:    Initialize all States 

Define all states and voltages to be zero.  Define a time increment, which should be much 

smaller than the period of the phase detector frequency.  Define the initial frequency of the 

VCO to be the starting frequency. 

 

Step 2:   Determine the new charge pump state and current 

Define this as CPout.  A charge pump event occurs when the phases of one of the inputs to 

the phase detector exceeds one and it causes the phase detector to change states 

 

Step 3:  Determine the new voltage at the VCO 

For example, in a second order filter the following equations hold: 

 

𝐶𝑃𝑜𝑢𝑡 = 𝑖1 + 𝑖2 (29.1)  

 

𝑖1 = 𝐶1 ∙
∆𝑉1

∆𝑡
  (29.2)  

 

𝑖2 = 𝐶2 ∙
∆𝑉2

∆𝑡
 (29.3)  

 

𝑉1 =  𝑉2 + 𝑖2 ∙ 𝑅2 (29.4)  

 

Now these equations can be combined to solve for V1 and V2.  Once these are known, the 

new VCO frequency can be found.  The table below shows the values for various orders of 

active and passive loop filters.  These are found using the brute force method.  This method 

may take a lot of computer time, but will give an accurate result, provided that step size t is 

sufficiently small. 
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n
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∆𝑉2 =  
∆𝑡 ∙ (𝑉1 − 𝑉2)

𝐶2 ∙ 𝑅2
 

 

∆𝑉1 =  
∆𝑡 ∙ 𝐶𝑃𝑜𝑢𝑡 − 𝐶2 ∙ ∆𝑉2

𝐶1
 

 

3
rd

 

 

∆𝑉3 =  
∆𝑡 ∙ (𝑉1 − 𝑉3)

𝐶3 ∙ 𝑅3
 

 

∆𝑉2 =  
∆𝑡 ∙ (𝑉1 − 𝑉2)

𝐶2 ∙ 𝑅2
 

 

∆𝑉1 =  
∆𝑡 ∙ 𝐶𝑃𝑜𝑢𝑡 − 𝐶2 ∙ ∆𝑉2 − 𝐶3 ∙ ∆𝑉3

𝐶1
 

 

4
th

 

 

∆𝑉4 =  
∆𝑡 ∙ (𝑉3 − 𝑉4)

𝐶4 ∙ 𝑅4
 

 

∆𝑉3 =  
∆𝑡 ∙ (𝑉1 − 𝑉3)

𝐶3 ∙ 𝑅3
− 
𝐶4 ∙ ∆𝑉4

𝐶3
 

 

∆𝑉2 =  
∆𝑡 ∙ (𝑉1 − 𝑉2)

𝐶2 ∙ 𝑅2
 

 

∆𝑉1 =  
∆𝑡 ∙ 𝐶𝑃𝑜𝑢𝑡 − 𝐶2 ∙ ∆𝑉2 − 𝐶3 ∙ ∆𝑉3 − 𝐶4 ∙ ∆𝑉4

𝐶1
 

 

Table 29.1 Discrete Lock Time Formulae for a Passive Filter 

 

Step 4:  Calculate the new VCO frequency 

The tuning voltage will be the voltage across the highest order capacitor. 

 

Step 5:  Calculate the New Phases for the Inputs of the Phase Detector 

Recalling that 1 Hz is one cycle per second, calculated the fraction of added cycles by 

multiplying the frequency times the time step and adding it to the current number of cycles.  

If this cycle exceeds one, consider a charge pump event.  Now return to step 2. 
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Comments Regarding Computational Accuracy of the Brute Force Method 

The accuracy of the computations is limited by the size of the time step t.  This typically 

requires a time step that is too small to be practical. However, the transient response that 

happens up to the peak time is the part that is most impacted by the discrete sampling effects 

of the charge pump.  This portion of the transient response is of the most interest when 

studying discrete sampling effects and is also much less sensitive to the step size.  Using 

solution methods like Runga-Kutta do not really improve the accuracy because the limiting 

factor is that there should be at least 8 time steps within the amount of time the charge pump 

comes on in order to get a good final settling frequency tolerance.  One trick to improve this 

is to make the size of the time step dynamic such that the resolution is finer near the times the 

charge pump is on.  Another good trick is to bail out of the routine once the frequency is close 

and there are less than 8 time steps in one charge pump event.  If one studies the analog 

simulation, the increase in lock time due to discrete sampling effects will be roughly equal to 

the increase in the peak time due to discrete sampling effects.  Now although this method will 

converge to the exact solution provided that the time step, t, is small, it takes a very large 

number of iterations and takes a while, even with modern computers. 

 

Improvements to the Brute Force Method 

Although the brute force method may be intuitive, it has the disadvantages of slower 

computational time and also requires different formulae based on different filter topologies 

and for active and passive filters.  To improve upon this, the computational speed and accuracy 

can be improved by calculating the voltages as an exact function of the time step t, instead 

of using an approximation that depends on the time step being very small. 

The first reaction may be that the mathematics are hideously complicated, and indeed this is 

the case.  The fourth order passive filter would involve four voltages, and each one interacts 

with the others to make it a very involved problem.  However, there is relief in the fact that it 

is not necessary to know all of these voltages to know the output voltage, provided that no 

resistors or components are switched in or out during the time that the PLL is locking.  Even 

if this is the case, the fast-locking mode can be modeled as well as the steady state mode.  All 

of these types of routines produce a glitch when they are disengaged, so it proves little to try 

to add this in the model.   

The key assumption is to transform the loop filter into one that the poles are separated.  In the 

case of a fourth order loop filter, it is a rare possibility that the transformed values for R3 and 

R4 will be complex.  In this pathological case, the mathematics still holds.  In order to 

transform this filter, the zero, poles, and loop filter coefficients must first be calculated.   
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Figure 29.1  Circuit Used to Simplify Discrete Lock Time Calculations 

 

The components for this analysis can be calculated from the loop filter time constants as 

follows: 

 

𝐶1 = 𝐴0 ∙
𝑇1

𝑇2
 (29.5)  

 

𝐶2 = 𝐴0 − 𝐶1 (29.6)  

 

𝑅2 =  
𝑇2

𝐶2
 (29.7)  

 

𝐶3 = 1 𝑛𝐹 (29.8)  

 

𝑅3 =  
𝑇3

𝐶3
 (29.9)  

 

𝐶4 = 1 𝑛𝐹 (29.10)  

 

𝑅4 =  
𝑇4

𝐶4
 (29.11)  

 

After the virtual components are calculated, it is then necessary to understand the impact of 

injecting a current of magnitude, CPout, and duration t on the various voltages of the 

capacitors in loop.  This can be done by simply taking the inverse Laplace Transform of the 

transfer function and modeling the charge pump on time as a rectangular pulse.  AMP 

represents the op amp gain, which is one in all cases but the Active C Filter.   
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From these functions, the voltage can be calculated exactly.  The positive transitions on the 

phase detector due to the rising edges of the R counter are known.  For the N counter, one 

method is to approximate this by the phase error.  For numerical methods, use half the phase 

error for the first iteration, and then keep dividing this phase error by 2, until the tolerance on 

the time error is acceptable.  Although the formulas for the third and fourth order filter look 

especially brutal, dealing with these are less effort than tinkering to improve computational 

accuracy and speed the other way.  The only disadvantage of doing it this way is that the 

formulas are a little more work to use and that these approximations would break down if a 

component was switched in during Fastlock.  In the case that a component is switched in, the 

glitch caused by doing so is usually very difficult to model, and therefore this model could be 

applied to the time before and the time after the component was switched in.  However, there 

would be no problem if only the charge pump current or the phase detector frequency was 

changed. 

 

 

 Voltage Calculations 

F
il
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r 
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rd

er
 

V
2
 

𝑉2𝑁𝑒𝑤 = 𝑉2𝑂𝑙𝑑 + 
𝐶𝑃𝑜𝑢𝑡 ∙ ∆𝑡

𝐶2
 

V
1
 

 

𝑉1𝐼𝑛𝑖𝑡𝑖𝑎𝑙 = 𝑉2𝑂𝑙𝑑  +  𝑒𝑥𝑝 (−
∆𝑡

𝑇1
) ∙ (𝑉1𝑂𝑙𝑑 − 𝑉2𝑂𝑙𝑑) 

 

𝑉1𝑇𝑟𝑎𝑛𝑠𝑖𝑒𝑛𝑡 = 
𝐶𝑃𝑜𝑢𝑡

𝐶2
∙ (𝑇2 − 𝑇1) ∙ (1 − 𝑒𝑥𝑝 (−

∆𝑡

𝑇1
)) 

 

𝑉1𝑁𝑒𝑤 = 𝑉1𝐼𝑛𝑖𝑡𝑖𝑎𝑙 + 𝑉1𝑇𝑟𝑎𝑛𝑠𝑖𝑒𝑛𝑡 
 

V
3

 

 

𝑉3𝐼𝑛𝑖𝑡𝑖𝑎𝑙 =
𝐴𝑀𝑃

𝐶1 + 𝐶2
∙ [𝑉1𝑂𝑙𝑑 ∙ 𝐶1 + 𝑉2𝑂𝑙𝑑 ∙ 𝐶2] 

+
𝐴𝑀𝑃 ∙ 𝑒𝑥𝑝 (−

∆𝑡
𝑇1
)

𝐶1 + 𝐶2
∙ [𝑉1𝑂𝑙𝑑 ∙ 𝐶1 ∙ (

𝑇2

𝑇1
− 1) − 𝑉2𝑂𝑙𝑑 ∙ 𝐶2] 

+
𝐴𝑀𝑃 ∙ 𝑒𝑥𝑝 (−

∆𝑡
𝑇3
)

𝐶1 + 𝐶2
∙ [−𝑉1𝑂𝑙𝑑 ∙ 𝐶1 ∙ (

𝑇2

𝑇3
− 1) − 𝑉2𝑂𝑙𝑑 ∙ 𝐶2] 

+𝑉3𝑂𝑙𝑑 ∙ 𝑒𝑥𝑝 (−
∆𝑡

𝑇3
) 

 
 

𝑉1𝑇𝑟𝑎𝑛𝑠𝑖𝑒𝑛𝑡 = 
𝐶𝑃𝑜𝑢𝑡 ∙ 𝐴𝑀𝑃

𝐶1 + 𝐶2

∙ [𝑇2 − 𝑇1 − 𝑇3 + ∆𝑡 + 
(𝑇1 − 𝑇2) ∙ 𝑇1 ∙ 𝑒𝑥𝑝 (−

∆𝑡
𝑇1
) + (𝑇2 − 𝑇3) ∙ 𝑇3 ∙ 𝑒𝑥𝑝 (−

∆𝑡
𝑇3
)

𝑇1 − 𝑇3
] 

 

 

𝑉3𝑁𝑒𝑤 = 𝑉3𝐼𝑛𝑖𝑡𝑖𝑎𝑙 + 𝑉3𝑇𝑟𝑎𝑛𝑠𝑖𝑒𝑛𝑡 
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𝑉4𝐼𝑛𝑖𝑡𝑖𝑎𝑙 =
𝐴𝑀𝑃

𝐶1 + 𝐶2
∙ [𝑉1𝑂𝑙𝑑 ∙ 𝐶1 + 𝑉2𝑂𝑙𝑑 ∙ 𝐶2] 

                   −
𝐴𝑀𝑃 ∙ 𝑒𝑥𝑝 (−

∆𝑡
𝑇1
)

𝐶1 + 𝐶2
∙ [
𝑉1𝑂𝑙𝑑 ∙ 𝐶1 ∙ (𝑇2 − 𝑇1) − 𝑉2𝑂𝑙𝑑 ∙ 𝐶2 ∙ 𝑇1

(𝑇1 − 𝑇3) ∙ (𝑇3 − 𝑇4)
]    

                  +
𝐴𝑀𝑃 ∙ 𝑒𝑥𝑝 (−

∆𝑡
𝑇3
)

𝐶1 + 𝐶2
∙ [
𝑉1𝑂𝑙𝑑 ∙ 𝐶1 ∙ (𝑇2 − 𝑇3) − 𝑉2𝑂𝑙𝑑 ∙ 𝐶2 ∙ 𝑇3

(𝑇1 − 𝑇3) ∙ (𝑇3 − 𝑇4)
] 

                  +
𝐴𝑀𝑃 ∙ 𝑒𝑥𝑝 (−

∆𝑡
𝑇4
)

𝐶1 + 𝐶2
∙ [
𝑉1𝑂𝑙𝑑 ∙ 𝐶1 ∙ (𝑇2 − 𝑇4) − 𝑉2𝑂𝑙𝑑 ∙ 𝐶2 ∙ 𝑇4

(𝑇1 − 𝑇3) ∙ (𝑇3 − 𝑇4)
] 

                   +𝑉4𝑂𝑙𝑑 ∙ 𝑒𝑥𝑝 (−
∆𝑡

𝑇4
)  

 

 

𝑉4𝑇𝑟𝑎𝑛𝑠𝑖𝑒𝑛𝑡 = 
𝐶𝑃𝑜𝑢𝑡 ∙ 𝐴𝑀𝑃

𝐶1 + 𝐶2

∙ [𝑇2 − 𝑇1 − 𝑇3 − 𝑇4 + ∆𝑡 + 
(𝑇1 − 𝑇2) ∙ 𝑇12 ∙ 𝑒𝑥𝑝 (−

∆𝑡
𝑇1
)

(𝑇3 − 𝑇1) ∙ (𝑇4 − 𝑇1)

+ 
(𝑇2 − 𝑇3) ∙ 𝑇32 ∙ 𝑒𝑥𝑝 (−

∆𝑡
𝑇3
)

(𝑇1 − 𝑇3) ∙ (𝑇4 − 𝑇3)
+ 
(𝑇2 − 𝑇4) ∙ 𝑇42 ∙ 𝑒𝑥𝑝 (−

∆𝑡
𝑇4
)

(𝑇1 − 𝑇4) ∙ (𝑇3 − 𝑇4)
] 

 

 

𝑉4𝑁𝑒𝑤 = 𝑉4𝐼𝑛𝑖𝑡𝑖𝑎𝑙 + 𝑉4𝑇𝑟𝑎𝑛𝑠𝑖𝑒𝑛𝑡 

 

Table 29.2 Simplified Formulae for Discrete Lock Time Calculation 
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Cycle Slipping  

Cause of Cycle Slipping 

The cause of cycle slipping is that the charge pump goes from a very high duty cycle to a very 

low duty cycle.  The charge pump does not pump in the wrong direction in order to cause a 

cycle slip.  What happens is that a large voltage is developed across the resistor R2 in the loop 

filter when the charge pump current is flowing, and when it is removed, there is a 

corresponding drop in the VCO tuning voltage.  Note that the capacitor C1 and the other loop 

filter components may reduce this voltage drop.  In the example below, a single cycle slip 

occurs around 17 ms.  In this particular case, the cycle slip has only a small impact on the lock 

time.  However, in the above example, there can be far more cycle slips that can greatly 

degrade the lock time. 

 

 

Figure 29.2  Anatomy of a Cycle Slip 
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Calculating when Cycle Slipping is an Issue 

Assuming an infinite loop bandwidth and both dividers starting off in phase, the time to the 

first cycle slip is when the N divider gets one full cycle ahead of the R divider.  

 

0 1/fPD 2/fPD 3/fPD 4/fPD 5/fPD

 2 3 4 5

N Divider

R Divider

 

Figure 29.3  Calculating the time to the First Cycle Slip for an Infinite Loop Bandwidth 

 

Assuming the N divider output is higher frequency than the R divider output, the time to the 

first cycle slip with a zero Hz loop bandwidth is: 

 

𝑡 =  
1

𝑓𝑃𝐷
∙
(
1
𝑓𝑃𝐷

)

𝜀
=  

1

𝑓𝑃𝐷
2 ∙ |

𝑁
𝑓1

−
𝑁
𝑓2
|
 =  

1

𝑓𝑃𝐷 ∙ |1 −
𝑓1
𝑓2
|
 (29.12)  

 

Now if the PLL is in lock, no cycle slipping occurs and t is infinite.  However, if not, this time 

should be about the rise time or more in order to avoid cycle slipping.  In actuality, the loop 

bandwidth is not infinite, and assuming that no cycle slipping occurs before the peak time is 

not realistic.  A more reasonable assumption is to assume that the first cycle slip cannot occur 

before one-fourth of the peak time.  Applying this rule and using the equations for peak time 

from the previous chapter give the following relationship. 

 

𝑓𝑃𝐷
𝐵𝑊

< 
5

|1 −
𝑓2
𝑓1
|
  

(29.13)  

 

For instance, if the frequency changes 5%, then the ratio of the phase detector frequency to 

the loop bandwidth should be no more than 100 if one wants to avoid the effects of cycle 

slipping.  This factor of 100 will be used throughout this book for the sake of simplicity.   
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Impact of Cycle Slipping on Lock Time  

A natural question to ask is what is the impact on lock time due to cycle slipping if condition 

(29.13) is violated?  Intuitively speaking, Figure 29.3 suggests if the magnitude of the 

frequency change is doubled, then the cycle slipping would occur twice as often. Also, if the 

loop bandwidth was to be doubled, one would expect the cycle slipping to be about half.  

Combining these thoughts with (29.13) yields the peak time multiplier, which is a coarse 

estimate of how much the peak time will be multiplied due to cycle slipping.  

 

𝑃𝑒𝑎𝑘 𝑇𝑖𝑚𝑒 𝑀𝑢𝑙𝑡𝑖𝑝𝑙𝑖𝑒𝑟 = 𝑚𝑎𝑥 {
2

3
×
(
𝑓𝑃𝐷
𝐵𝑊

) ∙ |1 −
𝑓2
𝑓1
|

5
, 1}   (29.14)  

 

The factor of 2/3 is empirical number from experience, not derivation, and comes in for two 

reasons.  The first is that the overshoot typically is a lot less in cases where cycle slipping is 

occurring as this decreases the peak time.  The second reason is that the severity of the cycle 

slipping decreases as the PLL gets closer to the target frequency.  Figure 29.4   shows the lock 

time for a PLL system with a 5 kHz loop bandwidth and various phase detector frequencies.  

This is the same example filter used for the analog lock time.    This was simulated for phase 

detector frequencies of 200 kHz, 2 MHz, 10 MHz, and 20 MHz as well as doing an analog 

simulation.  The charge pump current was adjusted to keep the same loop bandwidth.  The 

peak time multipliers are as follows: 

 

fPD  

(MHz) 

Calculated Peak 

Time Multiplier 

Simulated Peak 

Time (ms) 

Simulated Lock 

Time (ms) 

Analog n/a 93 446 

200 1 95 425 

2000 1 93 430  

10000 2.9 170 475 

20000 5.9 530 825 

Table 29.3 Calculated Values for Figure 29.4  

 

When the phase detector frequency is less than 100 times the loop bandwidth (200 kHz in this 

case), the analog and discrete lock time model agree.  However, when the phase detector 

frequency is much larger than 100 times the loop bandwidth, the rise time is greatly increased, 

which in turn increases the lock time.   It is a reasonably accurate rule of thumb to assume that 

the amount that the lock time is increased due to cycle slipping is equal to the amount that the 

rise time is increased by cycle slipping. 
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Figure 29.4  Cycle Slip Example 

 

 

Conclusion 

The analog model of lock time does a good job provided that the phase detector frequency 

does not exceed about 100 times the loop bandwidth and is not less than 10 times the loop 

bandwidth.  There are many advantages of the analog method including computational 

elegance, speed, and accuracy.  However, in situations where the phase detector frequency 

becomes either too small or too large relative to the loop bandwidth, discrete sampling effects 

become too significant to ignore.  In situations where the loop bandwidth is less than about 

1% of the phase detector frequency, cycle slipping starts to occur, which greatly increases the 

rise time and the lock time.   When the loop bandwidth exceeds about 10% of the phase 

detector frequency, discrete sampling effects start to become more relevant and typically 

degrade lock time.  These are just rough guidelines as the amount of the frequency change 

also matters, so for the most accurate modeling of lock time, it is best to account for the 

discrete sampling effects of the charge pump. 
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Chapter 30      VCO Digital Calibration Time for Integrated VCOs 

 

Introduction 

Integrated VCOs on silicon are becoming more commonplace in integrated circuits.  These 

VCOs tend to be more complicated and often have multiple internal frequency bands and 

internally adjusted amplitude settings.   Whenever the frequency is changed by more than a 

small amount, there is typically some sort of calibration process to find the optimal frequency 

band and amplitude setting.  After the calibration is compete, the VCO frequency will be close 

and then the PLL will settle out the last part of the frequency error using traditional analog 

locking means.   For some designs with narrower loop bandwidths, the VCO calibration can 

improve lock time because it gets the PLL close to the desired frequency when it is finished.  

This reduces cycle slipping and can reduce the overall lock time.  In other designs with wider 

loop bandwidths, the VCO calibration can be slower than the traditional analog lock time and 

it increases the overall lock time.   VCO calibration can be device specific in how it is done, 

but typically the key concerns are the time that the VCO calibration takes and the remaining 

frequency error when the calibration is finished.  This chapter discusses VCO calibration time 

and presents models for it. 

 

Aspects of VCO Calibration 

The VCO calibration typically involves the elements of switching the capacitor bank, 

switching the inductor cores, and performing the amplitude calibration.  The action of 

switching the VCO frequencies with the capacitor bank and inductor cores will be referred to 

as the frequency calibration and the action of calibrating the amplitude will be referred to as 

the amplitude calibration.   

 

Frequency Calibration by Switching VCO Frequency Bands 

The frequency calibration methods often tend to be linear or divide and conquer.  For a linear 

VCO calibration, the general concept is that the VCO searches for the frequency band by 

incrementing or decrementing the VCO frequency in small steps.    A divide and conquer 

approach is one that does successive guesses.  The first guess is typically near the middle of 

the frequency range.  If the frequency is too high, then the next guess is typically the midpoint 

between this first guess and the lowest VCO frequency.  If the guess is too low, then it is the 

midpoint between the first guess and the highest VCO frequency.  This process continues until 

the correct frequency band is attained.  The divide and conquer approach may be faster, but 

care has to be done to ensure that it reliably converges every time to the correct solution, 

especially if the initial frequency is near the boundary of two frequency bands.   Figure 30.1 

shows the divide and conquer approach converging to the correct frequency value.  In this 

particular case, we see another disturbance after the calibration has found the correct 

frequency band.  This is because after the first frequency calibration, the amplitude calibration 

is run, and then the frequency calibration needs to be re-run as the frequency values get 

impacted by the amplitude calibration. 
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Figure 30.1  LMX2531 Silicon VCO Using a Divide and Conquer Approach 

 

Frequency Calibration – Switching between VCO Cores 

Multiple core VCOs are becoming more commonplace in the market and the switching 

between cores can impact the calibration time.  The two things to keep in mind when cores 

are being switched is the frequency error it introduces as well as any additional delays it 

introduces at each core.  The following figure shows the LMX2581 VCO calibration going 

through each of its four VCO cores.   We can see that every time a core is changed, the overlap 

in frequencies between the cores causes a little disturbance in the frequency ramp. 

 

 

Figure 30.2  LMX2581 VCO Switching Through All Four Cores 
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Aside from just the frequency error switching between the cores, there can be a delay at the 

start of each core.  This is often the amplitude calibration to get the core running.  The 

following figure was created with the LMX2571 by setting it in a special mode to exaggerate 

the delay switching between cores. 

 

 

Figure 30.3  Delay Switching between VCO Cores 

 

 

Modeling the VCO Calibration 

VCO Calibration Clock  

The VCO calibration is clocked by at a state machine clock of frequency fCALCLK.  This clock 

is derived by a divided down version of the input or phase detector frequency.  The amount it 

is divided down typically determined by a bit the user programs based on a datasheet 

recommendation.  A faster state machine clock yields a faster VCO calibration time, but it 

cannot be too fast or else it will lead to calibration errors.  For this reason, the amount that this 

clock is divided down is typically program the user based on a datasheet recommendation.   

For some devices there may be two state machine clocks where different parts of the 

calibration are run by different state machine clocks. 

 

Calibration Error 

The other universal aspect is the calibration error.  After the VCO is settled, the frequency 

will not be exactly correct and there will be some error, CalError, which is typically settled 

out with the analog PLL.  This value is specific to the device and can be approximated as half 

of the difference between the center of two adjacent VCO frequency bands. 
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Device Condition(s) fCalCLK 

LMX2531 
       𝑓𝑂𝑆𝐶 ≤ 40 𝑀𝐻𝑧        𝑓𝑂𝑆𝐶 

       𝑓𝑂𝑆𝐶 > 40 𝑀𝐻𝑧        𝑓𝑂𝑆𝐶 2⁄  

LMX2571 All        𝑓𝑃𝐷 

LMX2581 

R=1 

 𝑓𝑂𝑆𝐶 ≤ 64 𝑀𝐻𝑧  𝑓𝑂𝑆𝐶 

64 𝑀𝐻𝑧 <  𝑓𝑂𝑆𝐶 ≤ 128 𝑀𝐻𝑧        𝑓𝑂𝑆𝐶 2⁄  

128 𝑀𝐻𝑧 <  𝑓𝑂𝑆𝐶 ≤ 256 𝑀𝐻𝑧        𝑓𝑂𝑆𝐶 4⁄  

𝑓𝑂𝑆𝐶 > 256 𝑀𝐻𝑧        𝑓𝑂𝑆𝐶 8⁄  

R>1 
 𝑓𝑂𝑆𝐶 ≤ 256 𝑀𝐻𝑧        𝑓𝑂𝑆𝐶 5⁄  

𝑓𝑂𝑆𝐶 > 256 𝑀𝐻𝑧        𝑓𝑂𝑆𝐶 10⁄  

Table 30.1 State Machine Clocks for Various TI PLLs 

 

A Simplified VCO Calibration Model 

FvcoStart

FvcoStop

Analog

Lock

Time

Time

VCOCalError

FixedCalTime

CoreOverlap

VariableCalTime

f

Slope = m

 

Figure 30.4  Simplified VCO Calibration Model 
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Figure 30.4  shows that the VCO calibration time can be thought of a fixed time and a variable 

time.  The fixed time includes any amplitude calibration and time switching between the VCO 

cores.  The variable time consists of the total amount of frequency the VCO needs to changed 

(f) multiplied by the slope (m).  f includes the intended VCO frequency change as 

VCOCalError, which includes any additional frequency the VCO has to slew due to the 

differences in frequencies between the cores. 

  

  

𝑉𝐶𝑂𝐶𝑎𝑙𝑇𝑖𝑚𝑒 = 𝑚 ∙ ∆𝑓 + 𝐹𝑖𝑥𝑒𝑑𝐶𝑎𝑙𝑇𝑖𝑚𝑒  (30.1)  

 

 

These parameters can further be calculated based on various coefficients. 

 

𝑚 = 𝐶 + 
𝐷

𝑓𝐶𝑎𝑙𝐶𝐿𝐾
  (30.2)  

 

𝐹𝑖𝑥𝑒𝑑𝐶𝑎𝑙𝑇𝑖𝑚𝑒 = 𝑡𝐹𝑖𝑥𝑒𝑑 +  𝐶𝑜𝑟𝑒𝐶ℎ𝑎𝑛𝑔𝑒𝑠 ∙ 𝑡𝐶𝑜𝑟𝑒   (30.3)  

 

𝑡𝐹𝑖𝑥𝑒𝑑 = 𝐴 + 
𝐵

𝑓𝐶𝑎𝑙𝐶𝐿𝐾
  (30.4)  

 

𝑡𝐶𝑜𝑟𝑒 = 𝐸 + 
𝐹

𝑓𝐶𝑎𝑙𝐶𝐿𝐾
  (30.5)  

 

  

Some of these constants for various synthesizers are in the following table. 

 

Device 
tFixed m tCore 

CalError 
A B C D E F 

LMX2531LQ1778E 24 150 0.1 12.0 0 0 2.6 

LMX2581 0 0 0 7.5 0 0 2.3 

LMX2571 5 500 0 9.5 0 0 2 

Table 30.2 Calibration Constants 
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A Full Calibration Model 

The VCO calibration can be modeled in more sophisticated ways accounting for multiple 

VCO cores that may have different coefficients.   

FvcoStart

FvcoStop

Slo
pe  

Fmin(k+1)

Fmax(k)

FinalCal Analog
Lock
Time

Time

StartCoreDelay

SwitchCoreFrequencyError(k)

StartCoreDelay
StartCoreDelay

Slope*{Fmax(k)
-Fmin(k)} Slope*{Fmax(k)-Fmin(k)}

VCOCalError

 

Figure 30.5  Multiple Core VCO Calibration Model 

 
Category Parameter Symbol Unit Description 

fVCOStart Start Frequency fVCOStart MHz 
The frequency where the VCO calibration starts.  It could 
be a fixed frequency, a frequency chosen by the user, or 
a frequency based in the last frequency the VCO was at 

StartCoreDelay 

Formula & 
Description 

𝐴 +
𝐵

𝑓𝐶𝑎𝑙𝐶𝐿𝐾
 ms 

The delay between each VCO core when it switches.   It 
can be zero for some, none, or all VCO cores.     

Constant A ms 

Gradient B ms /MHz 

ApplyFirstCore T/F T/F 

Slope 

Formula & 
Description 

𝐶 +
𝐷

𝑓𝐶𝑎𝑙𝐶𝐿𝐾
 ms /MHz 

The time per frequency gradient  for the VCO to change 
frequency within a core.  Instant Core Slewing means this 
time is instantaneous.  Core overshoot means that on the 
final VCO core, the device will overshoot the final 
frequency. 

Constant C ms /MHz 

Gradient D none 

Instant Core 
Slewing 

 T/F 

Core Overshoot  T/F 

SwitchCore 

Frequency 

Error 

Formula & 
Description 

FStart(k+1)−FEnd (k) MHz When the core is switched and CoreOverLap is True, this 
is the error introduced. FEnd(k) is the end frequency of the 
previous core and  FStart(k+1) is starting frequency of the 
next core.    

CoreOverlap T/F T/F 

Start Frequency FStart(k+1) MHz 

End Frequency FEnd (k) MHz 

Final 
Calibration 

FinalCal 𝐸 +
∆𝐹

𝑓𝐶𝑎𝑙𝐶𝐿𝐾
 ms 

The time for any final frequency calibration.  This is often 
times amplitude calibration to optimize phase noise.   

VCOCalError Calibration Error VCOCalError MHz 
This is the frequency error from the final frequency after 
the VCO frequency calibration has finished. 

Table 30.3 Multiple Core VCO Calibration Model Parameter Descriptions  
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Lock Time Calibration Example with the LMX2581 

As an illustrative example, consider the example involving the LMX2581, which is exactly 

the case for the measurement in Table 30.2 .  A VCO divider of two was used to make the 

measurement easier with test equipment. 

 

Parameter Value Units 

VCO Frequency Change 1880 to 3760 MHz 

fPD 20 MHz 

fOSC 100 MHz 

VCO Divider 2 n/a 

Table 30.4 LMX2581 VCO Calibration Example 

 

 

Parameter Core Value Units 

VCO Frequency  

VCO1 1880 to 2290 

MHz 
VCO2 2168 to 2743 

VCO3 2650 to 3248 

VCO4 3126 to 3760 

A All 1880 to 2290 ms 

B All 2168 to 2743 n/a 

C All 2650 to 3248 ms/MHz 

D  

VCO1 8.6 

n/a 
VCO2 7.0 

VCO3 7.6 

VCO4 6.6 

E All 0 MHz 

F All 0 MHz 

VCOCalError 

VCO1 1.8 

MHz 
VCO2 2.3 

VCO3 2.3 

VCO4 2.8 

Table 30.5 LMX2581 VCO Calibration Coefficients 

 

The first step is to calculate the calibration clock speed.  Using Error! Reference source not f

ound., one can calculate this state machine clock as follows. 

 

𝑓𝐶𝑎𝑙𝐶𝑙𝑘 = 
𝑓𝑂𝑆𝐶
5

 =  
100 𝑀𝐻𝑧

5
= 20 𝑀𝐻𝑧  (30.6)  
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The slope for all four cores can be found by dividing the calibration coefficient (D) by the 

CalCLK value.  The slopes and additional overlap frequency from each core is as follows: 

 

VCO Core Slope Overlap from Last Core 

VCO1 8.6 / 20 MHz = 0.33 ms/MHz n/a 

VCO2 7.0 / 20 MHz = 0.35 ms/MHz 2168 MHz – 2290 MHz = −122 MHz 

VCO3 7.6 / 20 MHz = 0.38 ms/MHz 2650 MHz – 2743 MHz = −97 MHz 

VCO4 6.6 / 20 MHz = 0.33 ms/MHz 3126 – 3248 MHz = −122 MHz 

Table 30.6 LMX2581 Calculations NOT Accounting for Divide by Two 

 

These parameters can be combined to create the following simulation, as done with the 

PLLatinum Sim tool.  The calculated calibration time was 1123 ms as compared the measured 

calibration time of 1478 ms that was measured in Figure 30.2 . 

 

 

Figure 30.6  LMX2581 VCO Calibration Simulation with PLLatinum Sim Tool Accounting 

for Divide by Two 

 

Conclusion 

VCO calibration has many intricacies, and many devices give the user options that can help 

assist and speed up the calibration.  The modeling should not be taken as an exact science, but 

is still useful in getting a good idea of what sort of calibration time to expect.   
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Chapter 31      Transient Response with Capacitor Dielectrics and 

Railing 
 

Introduction 

Aside from the phase detector discrete sampling effects and VCO calibration time, there are 

other factors that can degrade the lock time.  Two of these are dielectric absorption of 

capacitors and railing. 

 

Dielectric Absorption of Capacitors 

Non-ideal capacitors have a property known as dielectric absorption.  To understand this 

property, consider a capacitor that is charged to a voltage, shorted, and the short is then 

removed.  For an ideal capacitor, the voltage will remain at zero volts.  A non-ideal capacitor 

with dielectric absorption will initially have to zero volts when shorted, but then a residual 

voltage will develop across the capacitor after the short is removed.   A simple model for the 

capacitor with dielectric absorption can be modeled by putting a small capacitance (CDA << 

C) and a large resistance (RDA) as shown in the following figure.   

 

 

RDA

CDA

C

  

Figure 31.1  Capacitor Modeling for Dielectric Absorption 

 

The capacitor with dielectric absorption, the impedance and admittance are as follows: 

 

𝑍(𝑠) =  
1 + 𝑠 ∙ 𝐶𝐷𝐴 ∙ 𝑅𝐷𝐴

𝑠 ∙ 𝐶𝐷𝐴 + 𝑠 ∙ 𝐶 ∙ (1 + 𝑠 ∙ 𝐶𝐷𝐴 ∙ 𝑅𝐷𝐴)
 (31.1)  

 + 

1

𝑍(𝑠)
= s ∙ C + 

𝑠 ∙ 𝐶𝐷𝐴
1 + 𝑠 ∙ 𝐶𝐷𝐴 ∙ 𝑅𝐷𝐴

 (31.2)  

 

This means that one can make the following substitution to model these effects. 

s ∙ C + 
𝑠 ∙ 𝐶𝐷𝐴

1 + 𝑠 ∙ 𝐶𝐷𝐴 ∙ 𝑅𝐷𝐴
      →      𝑠 ∙ 𝐶 (31.3)  
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The net effect of the dielectric absorption is that there is an extra zero and pole, which 

degrades the lock time and causes a long tail.   As this model was approximate anyways, it is 

easier to illustrate with an actual example using the conditions in Table 31.1 . 

 

Parameter Value Unit 

C1 6.8 nF 

C2 47 nF 

R2 1.5 kW 

KPD 4 mA 

KVCO 71 MHz/V 

fVCO 2100 to 2150 MHz 

fPD 0.2 MHz 

Loop Bandwidth 5.7 kHz 

Phase Margin 50.7 degrees 

Table 31.1 Example Loop Filter 

 

For this filter, the theoretical model using an ideal 47 nF capacitor for C2 is compared with 

measurements taken using C0G and X7R capacitors of this same value, but non-ideal 

dielectric absorption.  Looking at a wider span, the effect is not very noticeable and the 

differences are likely due to differences in the actual value of the capacitor and imperfections 

in the theoretical model. 

 

Figure 31.2  Wide Span Lock Transient Response with Different 47 nF C2 Capacitors 
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Although the impact of the capacitor dielectric maybe insignificant when looking at the wider 

span in Figure 31.2 , the impact is much different when looking at a more narrow span as in 

Figure 31.3 . 

 

 

Figure 31.3  Narrow Span Transient Response Using Different Capacitor Types 

 

When looking in closer in, the C0G capacitor matches the ideal model pretty well, but the 

capacitor with the X7R dielectric shows a long tail.  As it is very common for lock time to be 

within 1 kHz or 500 Hz, this added tail can significantly degrade lock time much more this 

example. 

As a rule of thumb, capacitors that are C0G, NP0, or film tend to have low dielectric 

absorption and X7R and lesser rated capacitors tend to be worse.  It is application specific as 

to what the impact of the capacitor dielectric will be, if at all.  Practically, the best way to spot 

it is when the lock time looks correct when from a wider span, but then shows a long tail when 

one zooms in to a lower frequency span.  

 

Railing 

When the VCO tuning voltage gets too close to the charge pump supply or ground, the charge 

pump current will be reduced which results in degraded lock time.  This effect can be modeled 

in the discrete analysis by relating these minimum and maximum charge pump voltages to a 

VCO frequency and then derating the charge pump current as follows: 
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𝐾𝑃𝐷 ∗= 𝐾𝑃𝐷 ∙ [1 − 𝑒𝑥𝑝 (− 
|𝑓𝑟𝑎𝑖𝑙 − 𝑓|

𝑓𝑘𝑛𝑒𝑒
)] (31.4)  

  

In this equation, KPD* is the derated charge pump current, frail is the frequency corresponding 

to the rail being approached, f is the current frequency, and fknee is the distance from this rail 

where the charge pump current is degraded to about 63% (1−1/e) of its value.  Figure 32.4  

shows an example with a 20 kHz loop bandwidth and 1 MHz and with a rail frequency of 

1550 MHz and a knee of 50 MHz. 

 

 

Figure 31.4  Simulation for Impact of Railing on Lock Time 

 

Conclusion 

There are many factors that can degrade lock time including changes in the VCO gain, cycle 

slipping, capacitor dielectric absorption, and railing.  This chapter has focused on the latter 

two of these.  Dielectric absorption has little effect on the rise time but can have a substantial 

effect on the lock time.  It is important to be aware of capacitor dielectric properties, especially 

when lock time is much worse than theoretically anticipated.  Realize that there are others 

such as cycle slipping and VCO gain changes.   When lock time is longer than theoretically 

predicted, it makes sense to ensure that capacitor dielectric absorption or railing are not the 

culprit. 
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Chapter 32      Using Fastlock and Cycle Slip Reduction  

 

Introduction 

In PLL design, a wider loop bandwidth is desirable for the fastest lock time, but this often is 

not optimal for the integrated noise, phase noise outside the loop bandwidth, or spurs.  This 

leads to a classical trade-off in loop filter design.  If one increases the loop bandwidth, then 

the lock time decreases at the expense of increasing the spur levels.  If one decreases the loop 

bandwidth, the spurs decrease at the expense of increasing the lock time.  The concept of 

Fastlock is to use a wide loop bandwidth when switching frequencies, and then switch a 

narrow loop bandwidth when not switching frequencies.   

 

Fastlock Description 

Fastlock is a feature of some PLLs that allows a wide loop bandwidth to be used for locking 

frequencies, and a narrower one to be used in the steady state.  This can be used to reduce the 

spur levels, or phase noise outside the loop bandwidth.  Fastlock is typically intended for a 

second order filter.  It can be used in higher order loop filter designs, but the pole ratios (T31, 

T43, and so on) need to be small.  Otherwise, switching in the wide loop bandwidth will cause 

the filter to become very unoptimized and cause the lock time to increase.  For this reason, 

this chapter focuses only on the use of Fastlock for a second order design. 

 

R3

R2

C2

 

C1 C3

KPD

R2p

 

Figure 32.1  Third Order Filter Using Fastlock   

 

When the PLL is in the locked state, charge pump gain KPD is used and resistor R2p is not 

grounded, therefore having no impact.  When the PLL switches frequency, the gain constant 

of the PLL is increased by a factor of M2.  This can be done by either increasing the charge 

pump current, phase detector frequency by a factor of M2, or both such that the product of 

their increase is M2.   For notation purposes, KPD* and fPD* represent the charge pump gain 

and phase detector gain when the PLL is switching frequency.  During the frequency switching 

of the PLL, resistor R2p is also switched in parallel with R2, making the total resistance R2* 

= R2 || R2p  = R2/M.  Recall that the forward loop gain for the second order filter is given by:  

 

𝐺(𝑠) =
𝐾𝑃𝐷 ∙ 𝐾𝑉𝐶𝑂
𝑁 ∙ 𝑠

∙
1 + 𝑠 ∙ 𝑇2

𝑠 ∙ 𝐴0 ∙ (1 + 𝑠 ∙ 𝑇1)
 (32.1)  



Using Fastlock and Cycle Slip Reduction  

 

291 

 

 

𝑇2 = 𝑅2 ∙ 𝐶2 (32.2)  

 

𝑇1 =
𝑅2 ∙ 𝐶2 ∙ 𝐶1

𝐴0
 

(32.3)  

𝐴0 = 𝐶1 + 𝐶2 (32.4)  

 

Parameter Normal Mode Fastlock Mode 

M √
𝐾𝑃𝐷 ∗

𝐾𝑃𝐷
∙
𝑓𝑃𝐷 ∗

𝑓𝑃𝐷
 

R2p 
𝑅2

𝑀 − 1
 

Equivalent Resistance, R2* R2 
M

R2
 

Charge Pump Gain KPD KPD* 

Phase Detector Frequency fPD fPD* 

Loop Gain Constant K M∙K 

Zero, T2 T2 
M

T 2
 

Pole, T1 T1 
M

T1
 

Loop Bandwidth BW M∙BW 

Theoretical Lock Time LT 
M

LT
 

Table 32.1 Filter Parameters in Normal and Fastlock Modes 

 

From the above table, one could conclude that if the charge pump was normally 1 mA, and 

then was switched to 4 mA, M would be two and there would be a theoretical 50% 

improvement in lock time.  Another way of thinking about this is that the loop bandwidth 

could be decreased to half of its original value, thus making a theoretical 12 dB improvement 

in reference spurs.  However, this disregards the fact that there is a glitch when Fastlock is 

disengaged, and this glitch can be very significant. 

 

  



   292         Using Fastlock and Cycle Slip Reduction 

                              

The Fastlock Disengagement Glitch 

Cause and Behavior of the Glitch 

When the Fastlock is disengaged, a frequency glitch is created.  This glitch can be caused by 

parasitic capacitances in the switch that switches out the resistor R2p, and imperfections in 

charge pump.  When the switch is disengaged, a small current is injected into the loop filter. 

It therefore follows that the size of the glitch is loop filter and PLL specific.   

 

Switching from 680 to 768 MHz Switching from 768 to 680 MHz 

  

This shows a lock time of 233 μs and a 

Fastlock glitch of 10.4 kHz 

This shows a lock time of 189 μs and a 

Fastlock glitch of 8.4 kHz 

Figure 32.2  Fastlock Disengagement Glitch 

 

One possible way to simulate the glitch is to model the unwanted charge injected into the loop 

filter as a delta function times a proportionality constant.   From this, one can see why the 

glitch size is greater for an unoptimized filter and inversely proportional to charge pump gain, 

assuming an optimized loop filter of fixed loop bandwidth.  Experimental results show that 

the ratio, M, does not have much impact on this glitch, only the charge pump gain used in the 

steady state.  For instance, if the charge pump gain was 800 uA in Fastlock mode and 100 mA 

in normal mode, then the glitch would be the same if the current was 1600 mA in Fastlock 

mode and 100 mA in normal mode.   

The glitch also decreases as the loop bandwidth decreases.  This can yield some unanticipated 

results.  For instance, one would think that a loop filter with 2 kHz loop bandwidth using 

Fastlock would take twice the time to lock as one with a 4 kHz loop bandwidth using Fastlock.  

However, it could lock faster than this since the Fastlock glitch for the 2 kHz loop filter is 

less.  In other words, the 4 kHz loop bandwidth filter would lock faster than the 2 kHz loop 

filter, but maybe not twice as fast.  Increasing the capacitor C1 or the pole ratios decrease the 

glitch, while increasing C2 makes the glitch slightly larger. 
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Optimal Timing for Fastlock Disengagement 

For optimal lock time, the Fastlock should be disengaged at a time such that the magnitude of 

this glitch is about the magnitude of the ringing of the PLL transient response.  If Fastlock is 

disengaged too early, then the full benefits of Fastlock are not realized.  If it is disengaged too 

late, then the settle time for the glitch becomes too large of a proportion of the lock time.  

Figure 32.2  shows the lock time when the Fastlock glitch is taken into consideration. 

 

 

Switching from 680 to 768 MHz Switching from 768 to 680 MHz 

  

This shows a composite lock time of 378 μs 

with a Fastlock timeout of 100 μs 

This shows a composite lock time of 300 μs 

with a Fastlock timeout of 100 μs 

Figure 32.3  Lock Time Using Optimal Fastlock Timeout of 100 μs 

 

 

Disadvantages of Using Fastlock 

Increased In-Band Phase Noise 

Since Fastlock requires that a higher current is switched in during frequency acquisition, this 

requires that the PLL is run in less than the highest current mode.  Recall from the phase noise 

chapter that the in-band phase noise is typically better for the higher charge pump gain.   

 

Higher Order Loop Filters 

Another disadvantage of using Fastlock is that if one builds a third or higher order filter with 

considerable spur attenuation, then it is likely not to work well with Fastlock.  Fastlock is most 

effective for second order loop filters, or higher order filters with small pole ratios. 
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Benefits of Using Fastlock 

 

M 
Loop Bandwidth 

Increase 

Theoretical Lock Time 

Reduction 
R2p 

2:1 × 2 50 % R2 

3:1 × 3 67 % 
2

2R
 

4:1 × 4 75 % 
3

2R
 

M:1 × M 







-

M

1
1100  % 

1

2

-M

R
 

Table 32.2 Theoretical Benefits of Using Fastlock 

 

The theoretical benefits of using Fastlock presented in the above table should be interpreted 

as theoretical best-case numbers for expected improvement, since they disregard the glitch 

caused when disengaging Fastlock.  Typically, in the type of Fastlock when the charge pump 

current is increased from 1x to 4x (M=2), the actual benefit of using Fastlock is typically about 

30%.  In the type of Fastlock where the charge pump current is increased from 1x to 16x 

(M=4), the actual benefit of using Fastlock is typically closer to a 50% improvement. These 

typical numbers are based on Texas Instruments LMX2330 and LMX2350 PLL families.  For 

more modern PLLs, the numbers might be a little different, but these numbers serve as a good 

rule of thumb. 

 

Cycle Slip Reduction 

Cycle slipping starts to become a factor in lock time when the phase detector frequency 

exceeds about 100 times the loop bandwidth.  One technique used by some parts from Texas 

Instruments involves increasing the charge pump current and decreasing the phase detector 

frequency by the same factor.  In this case, all of the loop filter parameters remain the same, 

but cycle slipping is greatly reduced.  This technique works very well in practice.  Cycle slip 

reduction helps to improve the peak time.  Normally, the peak time should be about 20% of 

the total lock time, but if cycle slipping is a problem, it can be the most dominant contributor 

to lock time.   The next several figures show the impact of cycle slip reduction. 
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Peak Time with Cycle Slip Reduction 

Positive peak time using cycle slip 

reduction is 151 μs.  Note the cycle slip.  

The frequency overshoot is 7.1 MHz.  

The cycle slip reduction factor was 16, 

which means the charge pump current is 

increased, and the phase detector 

frequency is decreased by a factor of 16 

during frequency acquisition.  For this 

case BW=10 kHz, fPD = 20 MHz/16 

 

Peak Time without Cycle Slip 

Reduction 

The peak time without using Fastlock is 

a whopping 561 μs due to excessive 

cycle slipping.  Note that the overshoot 

is only 1.8 MHz.  This is due to 

distortion caused by the cycle slipping. 

For this case,  

BW=10 kHz, fPD=20 MHz. 

Figure 32.4  Impact of Cycle Slip Reduction on Peak Time 
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Lock Time with Cycle Slip Reduction 

Positive lock time from 2400 to 2480 

MHz with cycle slip reduction is to a 1 

kHz tolerance is 486 μs. 

For this case,  

BW = 10 kHz,  fPD = 20 MHz/16 

 

 

Lock Time without Cycle Slip 

Reduction 

Negative lock time from 2480 to 2400 

MHz to a 1 kHz tolerance is 491 μs. For 

this case,  

BW = 10 kHz,  fPD = 20 MHz/16. 

Figure 32.5  Impact of Cycle Slip Reduction on Total Lock Time 

 

Conclusion 

Fastlock is most beneficial in applications where the frequency offset of the most troublesome 

spur is less than ten times the loop bandwidth.  In these situations, higher order filters have 

little real impact on the spur.  As the spur offset frequency becomes farther from the carrier, 

higher order filters become more practical.  An important issue with Fastlock is the glitch 

created when it is disengaged.  This is application specific, but it can take a significant portion 

of the lock time. 
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Chapter 33      Concepts of Loop Filter Design 

 

Introduction 

A few concepts are necessary before the introduction of the equations for PLL loop filter 

design.  These concepts include how to design for a tunable frequency range, the five design 

parameters (loop bandwidth, phase margin, gamma, T3/T1 ratio, and T4/T3 ratio), and 

determining the loop filter time constants from these five design parameters.    

 

Designing for a Tunable Frequency Range 

The loop filter is designed for a fixed value of N, KPD, and KVCO.   However, it is often the 

case that a PLL tunes over a range of frequencies, which will definitely change the N divider 

value and possibly the VCO gain as well.   The loop gain constant, K, is what impacts the 

dynamics of the loop filter.  

 

𝐾 =
𝐾𝑃𝐷 ∙ 𝐾𝑉𝐶𝑂

𝑁
 (33.1)  

 

Provided that the loop gain constant does not change significantly, it is not critical from a loop 

filter design perspective if the VCO gain, charge pump gain, or N counter value varies.  In 

order to minimize how much the loop bandwidth can vary from the intended design value, 

design for the loop gain to be the geometric mean of its minimum and maximum values.  

 

𝐾𝑑𝑒𝑠𝑖𝑔𝑛 = √𝐾𝑚𝑖𝑛 ∙ 𝐾𝑚𝑎𝑥 (33.2)  

Since the loop gain is not directly specified, one of the parameters, like charge pump current 

can be adjusted for this.  If the VCO gain and charge pump current are relatively constant, 

then choose the N counter value to be the geometric mean of the minimum and maximum 

values. 

𝑁𝑑𝑒𝑠𝑖𝑔𝑛 = √𝑁𝑚𝑖𝑛 ∙ 𝑁𝑚𝑎𝑥 (33.3)  

 

If the loop gain constant varies by more than about ±15% from the nominal value, it starts to 

make sense to try to compensate for this with the charge pump current, if it is programmable.   

𝐾𝑃𝐷 = 𝐾𝑃𝐷𝐷𝑒𝑠𝑖𝑔𝑛 ∙ (
𝑁

𝑁𝐷𝑒𝑠𝑖𝑔𝑛
) ∙ (

𝐾𝑉𝐶𝑂𝐷𝑒𝑠𝑖𝑔𝑛
𝐾𝑉𝐶𝑂

) (33.4)  
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To illustrate this concept, consider the case shown in Table 33.1 where the charge pump gain 

is adjusted to compensate for changes in then divider value and VCO gain. 

 

Parameter Unit fmin fdesign fmax 

fVCO MHz 1500 1740 2000 

KVCO MHz/V 20 28 40 

N n/a 75 87 100 

KPD mA 2900 2400 1900 

K A∙Hz/V 773.3 772.4 772.4 

Table 33.1 Parameters for a Tunable Design 

 

In this example, the design values were rounded, and the charge pump gain has a limited 100 

mA resolution and therefore the loop gain constants are not exactly the same, although they 

are very close. 

 

The Five Loop Filter Design Parameters 

The performance of a loop filter is theoretically determined by up to five design parameters 

of loop bandwidth, phase margin, gamma, T3/T1 Ratio, and T4/T3 ratio.  These parameters 

uniquely determine the zero, poles, and time constant of the loop filter and the performance 

as well, except for loop filter noise.  For filters of higher than second order, it is possible to 

have additional degrees of freedom with component choice, but the filter parameters will be 

unique.  The table below shows what parameters exist for each filter order. 

Parameter Symbol 
Filter Order 

2nd 3rd 4th 

Loop 

Bandwidth 
BW √ √ √ 

Phase Margin f √ √ √ 

Gamma  √ √ √ 

T3/T1 Ratio T31  √ √ 

T4/T3 Ratio T43   √ 

Table 33.2 Loop Filter Parameters 

 

These five parameters are discussed in depth in later chapters, so only a brief introduction has 

been given here. 
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Loop Bandwidth 

The loop bandwidth (BW) is the most critical design parameter and has a profound impact on 

spurs, phase noise, and lock time.  In fact, it is practically nonsense to talk about spurs or lock 

time without knowing the loop bandwidth.   Wider loop bandwidths give better lock times, 

but spurs that are not crosstalk dominated will be increased.   Inside the loop bandwidth, the 

PLL phase noise is passed, but the VCO phase noise is attenuated.  At the offset frequency 

where the PLL and VCO phase noise cross is a good starting point for minimizing jitter, but 

it makes sense to adjust the loop bandwidth upwards or downwards depending on spur and 

lock time requirements.   The maximum loop bandwidth is typically limited to one-tenth of 

the phase detector frequency.  It can also be limited by the VCO input capacitance or by loop 

filter component values being forced. 

 

Phase Margin 

The phase margin (f) is defined as 180 degrees minus the phase of the open loop gain at the 

loop bandwidth frequency.  This must be greater than zero and less than 180 degrees and is 

typically chosen between 30 and 80 degrees.  Simulations suggest that 48 degrees is close to 

optimal for lock time, but higher phase margins up to 80 degrees are preferable for a flatter 

response and higher tolerance to variations in VCO gain.  Lower phase margins may have 

more peaking in the response but give sharper cut-off for better spur attenuation and are also 

useful in situations where loop bandwidth is limited by the VCO input capacitance or forced 

component values. 

 

Gamma Optimization Factor 

The gamma optimization factor () relates to maximizing the phase margin at the loop 

bandwidth.  This is typically chosen based on the phase margin, but there are some cases with 

partially integrated loop filters where it makes sense to choose something differently.  This 

will be discussed in another chapter in more depth, but the equation is given below: 

 

 = 𝜔𝑐2 ∙ 𝑇2 ∙ (𝑇1 + 𝑇3 + 𝑇4) =  
𝜔𝑐2 ∙ 𝑇2 ∙ 𝐴1

𝐴0
 (33.5)  

 

T3/T1 Pole Ratio 

The T3/T1 pole ratio (31) is a ratio of the pole T3 to T1.  If this ratio is zero, the loop filter 

is less than third order.  Choosing this equal to 100% theoretically yields optimal spur 

attenuation for a fixed loop bandwidth but yields unrealizable components for a passive filter.  

It will be shown that if one chooses this as 68%, then this is almost the same spur attenuation 

as using 100% without leading to unrealizable component values. 

 

𝑇3 = 𝑇31 ∙ 𝑇1 (33.6)  
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T4/T3 Pole Ratio 

The T4/T3 pole ratio (T43) is a ratio of the pole T4 to T3.  If this ratio is zero, the loop filter 

is less than fourth order.  Choosing this equal to 100% yields optimal spur attenuation but 

leads to unrealizable component values for a passive filter.  For passive filters, it is typically 

chosen less such that T31 + T43 < 100%. 

 

𝑇4 = 𝑇1 ∙ 𝑇31 ∙ 𝑇43 (33.7)  

 

Determining the Loop Filter Coefficients and Poles from the Design Parameters 

Forward Loop Gain 

The loop filter impedance is defined as the output voltage at the VCO divided by current 

injected at the PLL charge pump.  The forward loop gain relates the design parameters to the 

loop filter coefficients and is shown below.   

 

𝐺(𝑠) =
𝐾𝑃𝐷 ∙ 𝐾𝑉𝐶𝑂
𝑁 ∙ 𝑠

∙  
1 + 𝑠 ∙ 𝑇2

𝐴0 ∙ 𝑠 ∙ (1 + 𝑠 ∙ 𝑇1) ∙ (1 + 𝑠 ∙ 𝑇3) ∙ (1 + 𝑠 ∙ 𝑇4)
 (33.8)  

 

 

Determining the Time Constants 

This method starts with expressing the phase margin in terms of the time constants.  The phase 

margin is specified as 180 degrees plus the phase of the forward loop gain as specified in 

(33.8). 

 

f =     180 + 𝑡𝑎𝑛−1(𝜔𝑐 ∙ 𝑇2)
− 𝑡𝑎𝑛−1(𝜔𝑐 ∙ 𝑇1)−𝑡𝑎𝑛−1(𝜔𝑐 ∙ 𝑇3)−𝑡𝑎𝑛−1(𝜔𝑐 ∙ 𝑇4) 

(33.9)  

 

Since f and the pole ratios are known, this can be simplified to an expression involving T1 

and T2.  A second expression involving T1 and T2 can be found by setting the derivative of 

the phase margin equal to zero at the frequency equal to the loop bandwidth.  This maximizes 

the phase margin at this frequency.   Simulations show that satisfying this condition minimizes 

the lock time of the PLL for a second order filter.  This method was taken from reference [1]. 

𝑑f

𝑑𝜔
|
𝜔=𝜔𝑐

= 0 

= 
𝑇2

1 + (𝜔𝑐 ∙ 𝑇2)2
−

𝑇1

1 + (𝜔𝑐 ∙ 𝑇1)2
−

𝑇3

1 + (𝜔𝑐 ∙ 𝑇3)2
−

𝑇4

1 + (𝜔𝑐 ∙ 𝑇4)2
 

(33.10)  
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Equations (33.9) and (33.10) and the pole ratios can be used to create a system of two 

equations with the two unknowns, T1 and T2.  The solution to these equations is presented 

in chapters to come.  This system can always be solved numerically and in the case of a 

second order filter (T31 = T43 = 0), an elegant closed form solution exists.  

 

𝑇2 =  
1

𝜔𝑐2 ∙ 𝑇1
 (33.11)  

 

 Simulations show that using equation (33.11) as a constraint gives a close approximation to 

the loop filter with the fastest lock time, but this is not exactly correct.  Using some 

approximations, equation (33.11) can extend to all loop filter orders and expressed as follows. 

𝑇2 =
1

𝜔𝑐2 ∙ (𝑇1 + 𝑇3 + 𝑇4)
 (33.12)  

 

Since this is an approximation to a rule of thumb that is only an approximation to the exact 

criteria for optimal performance, it makes sense to generalize this equation as: 

 

𝑇2 =


𝜔𝑐2 ∙ (𝑇1 + 𝑇3 + 𝑇4)
 (33.13)  

 

In the above equation,  is defined as the Gamma Optimization Factor.  Now 1.0 is a good 

starting value for this parameter, but this parameter is discussed in depth in other chapters. 

 

Calculating the Loop Filter Coefficients from the Time Constants 

This is the step that is expanded in much greater detail in other chapters.  However, one 

common concept that arises, regardless of the filter order, is the total capacitance.  This is the 

sum of all the capacitance values in the loop filter.  If one considers a delta current spike, then 

it should be intuitive that in the long term, the voltages across all the capacitors should be the 

same and that its voltage would be the same as if all four capacitor values were added together.  

The final value theorem says this result can be found by taking the limit of s∙Z(s) as s 

approaches zero.  This result is A0, the total loop filter capacitance. A0 can be found by setting 

the forward loop gain (G(s) divided by N) equal to one at the loop bandwidth. 

 

𝐴0 =
𝐾𝑃𝐷 ∙ 𝐾𝑉𝐶𝑂
𝑁 ∙ 𝜔𝑐2

∙ √
1 + 𝜔𝑐2 ∙ 𝑇22

(1 + 𝜔𝑐2 ∙ 𝑇12) ∙ (1 + 𝜔𝑐2 ∙ 𝑇32) ∙ (1 + 𝜔𝑐2 ∙ 𝑇42)
 (33.14)  
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Once the A0 coefficient is known, then the other coefficients can be found as follows: 

 

𝐴1 = 𝐴0 ∙ (𝑇1 + 𝑇3 + 𝑇4) (33.15)  

 

𝐴2 = 𝐴0 ∙ (𝑇1 ∙ 𝑇3 + 𝑇1 ∙ 𝑇4 + 𝑇3 ∙ 𝑇4) (33.16)  

 

𝐴3 = 𝐴0 ∙ 𝑇1 ∙ 𝑇3 ∙ 𝑇4 (33.17)  

 

The Pole Sum Constant 

One intermediate constant that comes up in a lot of calculations is the pole sum constant, 

which is just the sum of the poles.  It is used in later chapters to simplify calculations and has 

the following definition. 

 

𝜅 ≡  𝑇1 + 𝑇3 + 𝑇4 (33.18)  

 

 

Conclusion 

The design of the loop filter starts with understanding the key performance parameters of loop 

bandwidth, phase margin, gamma, and pole ratios.  There are many trade-offs involved and 

there is on one choice for these that is always optimal in all situations.  The next several 

chapters will go on and discuss these parameters in greater depth. 

 

References 

[1] Keese, William O. An Analysis and Performance Evaluation of a Passive Filter 

Design Technique for Charge Pump Phase-Locked Loops  Application Note 1001.  

Texas Instruments 



Choosing the Loop Bandwidth  

 

305 

 

Chapter 34      Choosing the Loop Bandwidth 

 

The loop bandwidth is the most critical of all the design parameters and can impact spurs, lock 

time, and jitter by orders of magnitude.  The minimum loop bandwidth approaches zero Hz 

and is limited by the loop filter capacitors becoming unrealistically large.  The maximum loop 

bandwidth can be limited by either the VCO input capacitance, forced loop components that 

one designs around, or discrete sampling effects of the phase detector.  These discrete effects 

tend to become an issue around one-tenth of the phase detector frequency and result in 

instability around one-third of the phase detector frequency. 

This leaves a very wide range of choices for the loop bandwidth and it has a very profound 

impact on lock time, phase noise, spurs, and jitter.  There is no loop bandwidth that is optimal 

for all of these performance metrics, but there is one that is optimal for jitter, BWJIT, which 

serves as a good starting point for discussing the trade-offs in choosing the loop bandwidth.  

BWJIT can be found as the offset frequency where the VCO and PLL (and input reference) 

noise cross as shown in the following Figure 34.1 . 

 

  

Figure 34.1  Optimal Jitter Bandwidth 

 

In the above figure, the optimal bandwidth is where the PLL and VCO noise cross; about 

242.5 kHz.   If we assume that the loop filter is an ideal filter with a brick wall response and 

integration limits over the whole range, we can reason this by remembering that jitter is related 

to the area under the curve.  If the loop bandwidth was narrower, then the VCO noise would 

dominate at some offsets below the BWJIT, if the loop bandwidth was wider, then the PLL 

noise would be higher for some offsets above BWJIT.    
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Performance 

Metric 

Optimal Loop 

Bandwidth 
Typical Limiting Factor(s) 

Jitter 

~ BWJIT 

 

or 

 

0 Hz 

A bandwidth close to BWJIT is optimal for jitter 

provided that this number is greater than the lower 

integration limit for the jitter.  If this is not the case, then 

the optimal bandwidth is as narrow as possible. 

Lock Time fPD/10 

Increasing the loop bandwidth improves lock time with 

provided it is not limited by discrete sampling effects 

(which start to be a consideration when BW > fPD/10) 

or VCO digital calibration (in the case of an integrated 

VCO).  Also, the ability to increase the loop bandwidth 

may be limited by the VCO input capacitance, or if 

there are fixed components in the loop filter. 

Spurs 0 Hz 

Reducing the loop bandwidth generally improves spurs, 

but some spurs can also have causes that are not filtered 

by the loop filter (like crosstalk) which will limit much 

spurs can be improved by decreasing the loop 

bandwidth.    

Phase Noise 

 

0 Hz 

 

Or 

 

Infinite 

If the phase noise is less than the optimal jitter 

bandwidth, then it will improve with wider bandwidths 

until it is just the noise due to the input reference and 

the PLL. 

If the phase noise offset is greater than the optimal jitter 

bandwidth, then it will improve for narrower loop 

bandwidths until it becomes just the free-running VCO 

noise. 

Table 34.2   Impact of Loop Bandwidth on Critical Parameters 

  

Table 34.2  gives a good summary about how to choose a loop bandwidth.  If jitter is the only 

care about, then the optimal loop bandwidth is theoretically where VCO and PLL noise cross.  

In practice, the fact that the loop filter does not have an ideal brick wall response can cause 

this to be off by a good 25%.  How much it is off and whether it is larger or smaller is 

dependent on the VCO noise profile and phase margin.  Even if BWJIT is not the optimal 

bandwidth, it is close and the definition still remains as the frequency where the PLL and VCO 

noise cross.   

If lock time is the only concern, then make the loop bandwidth as wide as realistically possible, 

however at some point it will be limited by the fact that the loop filter capacitors get swamped 

out by the VCO input capacitance, or by the loop bandwidth getting larger than about 1/10th 

of the phase detector frequency.  Furthermore, for devices that have integrated VCOs, the 

VCO digital calibration time can start to dominate the lock time at some point. 
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For a spur that is outside the loop bandwidth, narrower bandwidths can improve the spur to a 

point.  However, if the spur is due to a mechanism that crosstalks around the loop filter, then 

narrowing the bandwidth will do no good.  For a spur that is inside the loop bandwidth, 

sometimes widening the loop bandwidth can help.  Typically, the worst bandwidth for a spur 

is when it is right near where the loop bandwidth peaks, which gives it the combination of 

PLL and VCO spur mechanisms working together. 

For phase noise of offset less than the optimal jitter bandwidth, opening the bandwidth will 

help because it filters out the effect of the VCO noise cropping in.  It also improves the flatness 

of the closed loop response at this offset.  If the phase noise is at an offset greater than the 

optimal jitter bandwidth, then narrowing the bandwidth typically is optimal as it filters out the 

PLL noise contribution. 

The jitter, lock time, and phase noise were calculated for an LMX2581 PLL at 2700 MHz for 

a noiseless reference to better show the trade-offs involved in choosing the loop bandwidth. 

The lock time was from 2100 to 2700 MHz to a 1 kHz tolerance.   For spurs, the 50 kHz offset 

spur was calculated for 2700.005 MHz and the 1 MHz offset spur was calculated for 2701 

MHz.   Note that although BWJIT is 242.5 kHz, the optimal jitter is at a slightly different 

bandwidth, because the loop filter does not have an ideal brick wall response. 

 

Loop 
Bandwidth 

(kHz) 

Jitter 
(fs) 

Phase Noise (dBc/Hz) 
Analog Lock Time 

(ms) 

Spurs (dBc) 

50 kHz 
Offset 

1 MHz 
Offset 

50 kHz 
Offset 

1 MHz 
Offset 

0 429.4 −102.2 −136.0 ∞ −32.9 −58.9 

1 433.3 −102.2 −136.0 1834.2 −32.9 −58.9 

2 444.6 −102.1 −136.0 923.0 −32.8 −58.9 

5 500.3 −102.0 −136.0 377.4 −32.7 −58.9 

10 551.7 −101.4 −136.0 195.3 −32.1 −58.9 

20 456.9 −100.1 −136.0 104.2 −30.7 −58.9 

50 232.7 −100.6 −135.9 49.6 −30.0 −58.8 

100 133.7 −106.9 −135.7 31.4 −33.0 −58.2 

200 91.6 −114.7 −134.2 22.3 −35.7 −54.2 

242.5208 87.2 −116.1 −133.2 20.7 −36.1 −52.0 

305 85.5 −117.2 −131.4 19.2 −36.4 −49.0 

500 91.4 −118.2 −126.2 16.8 −36.8 −42.2 

1000 115.7 −118.4 −120.2 15.0 −36.9 −35.5 

2000 156.0 −118.5 −119.4 14.1 −37.0 −34.6 

5000 238.5 −118.5 −121.1 13.5 −37.0 −36.2 

10000 321.9 −118.5 −121.7 13.4 −37.0 −36.8 

Table 34.3 Specific Example for LMX2581 and Loop Bandwidth Trade-off 
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Figure 34.2 shows this same data except the data has been normalized.  The loop bandwidth 

has been divided by BWJIT to create a normalized bandwidth, the phase noise and spurs have 

been normalized to what they were at BWJIT, and the lock time and jitter have been expressed 

as a percentage increase to what they were for BWJIT.   For the phase noise and spurs at 50 

kHz offset, we can see that they actually improve for wider bandwidths because they are at an 

offset less than the normalized bandwidth of one.  For the phase noise and spurs at 1 MHz 

offset, they degrade for wider bandwidths because they are at an offset that is greater than a 

normalized bandwidth of one. 

 

 

Figure 34.2  Normalized Filter Performance Example 

 

 

Conclusion 

In summary, the impact of the loop bandwidth cannot be ignored and it is therefore critical to 

choose this in an optimal way.   This involves balancing jitter, spurs, phase noise, and lock 

time. 
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Chapter 35      Optimal Choices for Phase Margin 

 

Introduction 

The phase margin influences lock time, integrated noise, and the peaking response of the loop 

filter.   It is true that the phase margin does interact a little with the gamma optimization factor 

and pole ratios, to be discussed in later chapters, but a good intuitive feel of the phase margin 

can be achieved by simply studying the case of a second order loop filter with a gamma 

optimization parameter of one. 

 

Impact of Phase Margin on Loop Response 

Impact on Closed Loop Response 

Phase margin has an impact on the closed loop response.  Higher phase margins tend to give 

a flatter loop response with less peaking, which is desirable where minimization of integrated 

noise is a goal.  However, by accepting a little peaking in the loop response, one can get more 

attenuation of spurs outside the loop bandwidth and more attenuation of the VCO noise inside 

the loop bandwidth.  Figure 35.1  demonstrates this with a second order filter with a 10 kHz 

loop bandwidth and a gamma optimization factor of one.   

 

 

Figure 35.1  Closed Loop Response vs. Phase Margin 

 

As the figure shows, the higher phase margin of 70 degrees gives a flatter response with the 

least peaking, which is good for minimizing integrated noise.  However, it also has higher 

gain starting at offsets of 20 kHz.  By the time the offset reaches 100 kHz, this difference 

stabilizes to about 10 dB.   In a later chapter, it will be shown that higher order filters help 
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with more attenuation at offsets that are at least 10 times the loop bandwidth, but the impact 

at this offset is on the order of 1 dB; the offset would need to be much higher to see a 10 dB 

improvement.  In summary, lower phase margin is good for attenuating spurs at lower offsets 

and higher order filters are more effect at much higher offset frequencies. 

 

Impact on VCO Noise Transfer Function 

Peaking in the phase noise or close in phase noise is not always the result of a low phase 

margin.  It is also possible for VCO phase noise to contribute significant phase noise at and 

below the loop bandwidth.   As a rule of thumb, higher phase margins reduce the peaking in 

the VCO gain near the loop bandwidth at the expense of having less attenuation of the VCO 

noise at offsets lower than the loop bandwidth.   Figure 35.2 shows the impact of phase margin 

on gain for a filter with loop bandwidth of 10 kHz and gamma of unity.  For a phase margin 

of 30 degrees, the VCO noise attenuation is a full 10 dB better for offsets of 1 kHz and below.   

 

Figure 35.2  VCO Transfer Function Gain vs. Phase Margin 

 

 

Impact on Variation of Filter Response 

As a general rule of thumb, the charge pump and VCO gain can vary significantly over 

process, temperature, and tuning voltage; it is good to try to account for this.  For instance, if 

the VCO gain was to be 40% higher than expected, the loop filter response would be different, 

but the design with the higher phase margin would change less than the one with the lower 

phase margin, especially with the peaking in the loop filter.  When this peak frequency moves 

around with process, it can be partially mitigated by designing to a higher phase margin.  This 

is illustrated in Figure 35.3 and Figure 35.4 . 
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Figure 35.3  Impact of ±40% VCO Gain Change with 30 degrees Phase Margin 

 

The filter with the higher phase margin filter has less peaking and better tolerance to variation 

in VCO gain. 

 

 

Figure 35.4  Impact of ±40% VCO Gain Change with 70 Degrees Phase Margin 
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Impact of Phase Margin on PLL Transient Response 

Impact of Phase Margin on Overshoot and Ringing 

Higher phase margins translate to less overshoot and ringing in the transient response.  The 

following figure shows the impact of phase margin for a second order loop filter with gamma 

of one and a 10 kHz loop bandwidth. 

 

 

Figure 35.5  Impact of Phase Margin on Overshoot and Ringing 

 

Although ringing and overshoot are generally not desirable by themselves, it is typically the 

lock time that is the more critical specification to worry about.  The gamma optimization factor 

also seems to have a fair amount of impact on the overshoot with a higher factor leading to 

less overshoot, but this factor has a much smaller impact on the ringing. 

 

Impact of Phase Margin on Lock Time 

The lock time is typically more of a concern than the overshoot and ringing and is also 

impacted by the gamma optimization factor.  For a factor of one, a phase margin near about 

48 degrees often gives the optimal lock time result. 
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Impact of Phase Margin on Stability 

Impact on Gain Margin 

In regard to stability as defined as all the closed loop poles having negative real parts, recall 

that it has been shown that the second order loop filter is always stable.  However, for higher 

order filters, a low phase margin of less than 20 degrees often results in instability, although 

this is dependent on other factors, such as gamma and the pole ratios.  As the VCO and charge 

pump gain can vary, one does need to have sufficient gain margin for this as well.   As a rule 

of thumb, higher phase margins translate to higher gain margins. 

 

Impact on Phase Margin for Restricted Loop Bandwidth Filters 

In some situations, there could be some component values that are forced in the loop filter that 

can restrict the loop bandwidth. This could be the case if the VCO input capacitance is an 

issue or there is a partially integrated loop filter.  In either case, a lower phase margin typically 

allows one to design a wider loop bandwidth. 

 

Conclusion 

The choice of phase margin involves a trade-off between integrated noise, lock time, and 

spurs.  For a stable loop filter with real positive components, it is necessary to design with a 

phase margin greater than zero degrees and less than 90 degrees.  If integrated phase noise is 

the only concern, then typically higher phase margins approaching 90 degrees are good, 

although 80 degrees is typically as high as one would want to go. Above this, component 

values in the filter start becoming too small or negative.  If spurs outside of the loop bandwidth 

were the only concern, then designing for a very low phase margin would yield sharper cut-

off and better spurious attenuation.  However, it would yield horrible peaking near the loop 

bandwidth and could even lead to instability if the phase margin was too low.  If lock time 

was the only consideration, simulations suggest that 48 degrees is typically close to what is 

optimal for the fastest lock time, although the gamma optimization factor and pole ratios can 

influence this number to a small degree. 
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Chapter 36      Optimal Choices for Gamma Optimization Parameter 

 

Introduction 

There are some that may be lead to a false sense of confidence that the loop filter is determined 

only by loop bandwidth and phase margin. The reality is that it is possible to design two 

second order loop filters with exactly the same phase margin and loop bandwidth, but with 

dramatically different lock times and spurs.  As a second order filter has three components, 

three constraints are needed to specify the components.  Loop bandwidth and phase margin 

are two of them and the third is the gamma optimization parameter ().  Assuming a gamma 

value of one is a good starting point, but there is further room for optimization.  The optimal 

choice for gamma is dependent on the phase margin.  This chapter investigates the optimal 

choice for gamma based on the phase margin.  

 

Definition of the Gamma Optimization Parameter 

If one imposes the design constraint that the phase margin is maximized at the loop bandwidth, 

then this is equivalent to designing for a gamma value of one.  Imposing this restriction yields 

the following equation: 

 

 

𝑇2

1 + 𝜔𝑐2 ∙ 𝑇22
=

𝑇1

1 + 𝜔𝑐2 ∙ 𝑇12
+

𝑇3

1 + 𝜔𝑐2 ∙ 𝑇32
+

𝑇4

1 + 𝜔𝑐2 ∙ 𝑇42
 (36.1)  

 

This can be approximated as: 

 

𝑇2 =
1

𝜔𝑐2 ∙ (𝑇1 + 𝑇3 + 𝑇4)
 (36.2)  

 

Choosing the phase margin to be optimized at the loop bandwidth is a good approximation to 

minimizing the lock time, but not the exact constraint; it makes sense to generalize it.  By 

introducing the variable, , but still keeping the equation in a similar form, one has a good 

idea of what values to try for this new variable.  The new constraint can be stated as follows: 

 

𝑇2 =
𝛾

𝜔𝑐2 ∙ (𝑇1 + 𝑇3 + 𝑇4)
=

𝛾

𝜔𝑐2 ∙ 𝜅
 (36.3)  
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Interpretation of the Gamma Optimization Factor 

Although the gamma optimization factor has a straightforward algebraic definition, the reader 

is likely to try to relate this to some other explanation for this parameter in terms of other 

terms, such as poles and zeros.   For the purposes of this discussion, it is easier to   convert 

the zero of T2 to a frequency by taking the reciprocal and dividing by 2p.  Then do the same 

for the pole sum ratio, .  

The phase margin is largely determined by the ratio of T2 to .  The loop bandwidth will 

always be greater than the frequency corresponding to T2 and less than the frequency 

corresponding to .  If gamma is one, then this means that the loop bandwidth is the geometric 

mean between these two frequencies.  If gamma is increased beyond one, the pole comes 

closer to the loop bandwidth and the zero moves farther away.  As gamma goes below one, 

the pole ratio moves farther away and the zero comes closer to the loop bandwidth.   

 

Gamma 
1/T2 

(kHz) 

BW 

(kHz) 
1/ 

(kHz) 
T2/ 

0 1 1 ∞ 0 

0.10 0.72 1 13.83 0.05 

0.20 0.64 1 7.79 0.08 

0.50 0.49 1 4.07 0.12 

1.00 0.36 1 2.75 0.13 

2.00 0.25 1 2.03 0.12 

5.00 0.13 1 1.56 0.08 

10.00 0.07 1 1.38 0.05 

∞ 0.00 1 1 0 

Table 36.1 Gamma Optimization Factor Example for BW=1 kHz, PM=50 degrees 

 

Eliminating and Normalizing Out Other Design Parameters 

Recall that it was proven in the lock time chapter that the lock time was inversely proportional 

to the loop bandwidth, given all other factors constant.  What this means is that whatever 

choice of phase margin and gamma are optimal for one loop bandwidth, is also optimal for 

another loop bandwidth.  The VCO gain, N value, and charge pump gain change the filter 

components, but have no impact on lock time, provided the loop filter is redesigned.  So the 

only thing left to study is the pole ratios, phase margin, and gamma optimization factor.  Now 

it will turn out that the pole ratios will have a small impact on the gamma parameter choice, 

and the phase margin will have the largest impact. 
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Results of Computer Simulations 

It also turns out that the size of the frequency jump can impact the lock time, but this effect is 

minimal.  So the approach is to assume fixed conditions for the frequency jump and tolerance, 

and then compile tables for the optimal gamma value based on computer simulations that 

cover all cases.  Following are the simulation parameters. 

 

Parameter Value Units 

KPD 5 mA 

KVCO 20 MHz/Volt 

BW 10 kHz 

fPD 200 kHz 

f Variable Degrees 

Frequency Jump 800 – 900 MHz 

Frequency Tolerance  

for Lock Time 
1 kHz 

N 4500 n/a 

Table 36.2 Conditions for Simulations 

 

 

Phase Margin Gamma for Fastest Lock Time 

30 1.40 

35 1.41 

40 1.29 

45 1.09 

50 0.94 

55 0.85 

60 0.70 

65 0.49 

70 0.24 

75 0.05 

80 0.08 

Table 36.3 Optimal Values for Gamma 
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First Simulation: Impact of Gamma Value and Phase Margin on Lock Time 

 

 

Figure 36.1  Lock Time as a Function of Phase Margin and Gamma 

 

Figure 36.1 shows the lock time for this loop filter as a function of phase margin and the 

gamma optimization parameter for a second order filter.  There is a specific value of gamma 

and phase margin that minimize the lock time.  Later in this chapter, this will be shown to be 

a phase margin of 50.8 degrees and a gamma value of 1.0062. 

Figure 36.2 shows the impact of phase margin and gamma on spur gain.  The spur gain does 

not have a minimum point.  As the phase margin is decreased and the gamma value is 

increased, the spur gain decreases.  However, the impact of phase margin and gamma on spur 

gain is much less than the impact of phase margin and gamma on lock time, so it makes sense 

to choose the phase margin and gamma value such that lock time is minimized. 

 

 

 

 

0.2

1.2
0

200

400

600

800

1000

1200

3
0

3
4

3
8

4
2

4
6

5
0

5
4

5
8

6
2

6
6

7
0

 

L
o

c
k

 T
im

e
 (

m
s

) 

f (deg) 



   318         Optimal Choices for Gamma Optimization Parameter 

                              

 

Figure 36.2  Spur Gain as a Function of Phase Margin and Gamma 

      

 

T31 Phi Gamma LT SG 

% Deg n/a ms dB 

0 50.8 1.006 246.4 29.9 

10 49.8 1.045 243.3 28.7 

20 49.0 1.075 240.6 26.6 

30 48.2 1.098 238.3 24.8 

40 47.8 1.115 236.4 23.7 

50 47.4 1.127 235.0 22.9 

60 47.1 1.136 233.9 22.4 

70 47.0 1.141 233.2 22.0 

80 47.0 1.144 232.8 21.9 

90 46.7 1.147 232.5 21.7 

100 46.8 1.147 232.4 21.7 

Table 36.4 Gamma and Phase Margin Values that Minimize Lock Time 

 

Table 36.4  shows how to choose gamma and the phase margin in order to minimize lock time.  

These numbers may vary slightly if the frequency jump or frequency tolerance for lock time 

is changed.  One thing that this does not take into consideration is the spur gain.  The next 

simulation does this. 
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Second Simulation:   Optimal Choice of Phase Margin and Gamma to Give the Best 

Trade-Off between Lock Time and Spurs 

For most designs, it is more realistic to try to minimize lock time while keeping the spur levels 

constant.    Although the loop bandwidth is the most dominant factor, phase margin and the 

gamma optimization parameter have some impact on spurs.   Since lock time and spurs are a 

tradeoff, the following table tries to consider both of these by minimizing the following index: 

 

𝐼𝑛𝑑𝑒𝑥 = 40 ∙ 𝑙𝑜𝑔 |
𝐿𝑜𝑐𝑘𝑇𝑖𝑚𝑒

100 𝜇𝑠
| + 𝑆𝑝𝑢𝑟𝐺𝑎𝑖𝑛 (36.4)  

 

 

T31 Phi Gamma LT SG 

% Deg n/a ms dB 

0 49.2 1.024 249.9 29.5 

10 46.8 1.081 252.9 27.6 

20 44.5 1.144 258.8 24.6 

30 43.7 1.168 257.6 22.8 

40 43.2 1.184 255.9 21.6 

50 42.5 1.203 257.0 20.6 

60 42.5 1.204 254.2 20.2 

70 42.2 1.212 254.3 19.8 

80 42.5 1.207 251.7 19.8 

90 42.4 1.209 251.6 19.7 

100 42.3 1.211 251.9 19.6 

Table 36.5 Optimal Choices for Phase Margin and Gamma to Minimize Index 

 

 

The table above is the fundamental result for this chapter.  The bottom line is that one should 

choose T31 as high as realistically possible for the best lock time and spur performance, while 

keeping the capacitor size next to the VCO large enough to not be significantly impacted by 

the VCO input capacitance and the series resistor to the VCO not too large so that it does not 

contribute too much thermal noise.  Once this parameter is chosen, then the optimal value for 

phase margin and gamma can be found from the table.  Note that if the frequency jump or 

tolerance is changed, these numbers change slightly, but this effect is small and can be 

disregarded for practical purposes.  The T43 ratio was not included because the simulation 

tool used to generate this table could not model the lock time for this without approximations.   
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Impact of Gamma Optimization Parameter on Peaking and Flatness 

If there is a lot of margin on lock time, then designing for a gamma optimization parameter 

higher than what is theoretically optimal for lock time might sensible.  By doing so, it 

increases the flatness of the filter and it also pushes the point where the VCO noise transfer 

function peaks beyond the loop bandwidth.  This is useful in situations where the VCO noise 

is causing most of the peaking.  It may also be helpful in the case that part of the loop filter is 

partially integrated, as it allows a wider loop bandwidth.  Figure 36.3 shows that increasing 

gamma decreases peaking of the loop filter response as well as spurs outside the loop 

bandwidth.  The tradeoff is that making gamma large degrades lock time severely.  One should 

also be mindful that although large gamma values make the closed loop response look flatter, 

it can cause peaking in the VCO phase noise response as shown in Figure 36.4 . 

 

Figure 36.3  Impact of Gamma Optimization Factor on Closed Loop Gain 

 

 

Figure 36.4  Impact of Gamma on the VCO Transfer Function Gain 
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Typically, the VCO noise, PLL noise, and resistor noises peak close to the loop bandwidth.  

However, when gamma is made much larger than one, these noise sources can peak at 

different frequencies, making the spectrum look flatter.  However, this is more due to noise 

shaping, instead of simply making the PLL more stable or PLL response less flat. 

 

Adjusting Gamma to Deal with Restricted Loop Bandwidth Situations 

In some situations, the loop bandwidth of the PLL can be restricted by the VCO input 

capacitance or extra fixed poles that are integrated on the chip.  In this situation, it is 

sometimes the case that it is hard to get as wide of a loop bandwidth as desired.  If this is the 

case, consider increasing gamma to allow for a wider loop bandwidth. 

 

Conclusion 

Optimal choices for the gamma optimization parameter have been discussed.  In most 

situations, the design objective is a trade-off between lock times and spurs.  By simply 

choosing gamma in an optimal way instead of just equal to one, lock time can be dramatically 

improved by up to 30% while simultaneously reducing the spur gain.  This is done with the 

restriction that the loop bandwidth is constant.   This assumes the goal is minimization of lock 

time and spurs.   

In some situations, the design objective is to make the loop filter response as flat as possible 

and/or reduce the RMS phase error.  In these situations, it may make sense to sacrifice lock 

time by designing for a much higher phase margin and gamma optimization factor than one 

would do if they were optimizing for spurs and lock time.   
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Chapter 37      Choosing Filter Order and Pole Ratios 

 

Introduction 

The simplest usable filter is the second order filter, but there is the option of adding additional 

poles.  In the right situation, additional poles can reduce spurs and delta sigma modulator 

noise.  In the wrong situation, additional poles can add resistor noise, restrict the loop 

bandwidth, or even cause instability.  When considering the addition of a pole, conceptually 

one compares this pole to the previous pole.  For instance, when adding a pole to a second 

order loop filter, one considers the ratio of newly added pole, T3, to the previous pole T1.  For 

this reason, it makes sense to define a pole ratio of T3/T1, or sometimes abbreviated T31.  In 

the case of adding a pole to a third order to make it fourth order, one considers the ratio of the 

newly added pole, T4, to the last pole T3.  In this case, we define a pole ratio of T4/T3, which 

is sometimes abbreviated as T43.   

If these pole ratios are zero, then the filter is considered one order lower.  For instance, a third 

order filter with T31=0 is really a second order filter.  A fourth order filter with T43 = 0 and 

T31>0 is really a third order filter.  For the purposes of spur attenuation, choosing the pole 

ratios to be one, or 100% give the maximum possible result, but this also leads to zero 

capacitors and infinite resistors.   

Although higher order filters will always eventually provide more attenuation of PLL noise 

and spurs provided the offset is sufficiently high, it is unrealistic to expect this in practice as 

noise and spurs will eventually be dominated by crosstalk.  For instance, if there is a spur at 

100 MHz offset, it is likely to be dominated by crosstalk around the loop filter and therefore 

will not be impacted by additional poles in the loop filter.  It therefore makes the most sense 

to choose some offset frequency of interest and then discuss what the impact of a higher order 

filter will have at this offset frequency.  For an integer PLL, this offset might be chosen to be 

equal to the phase detector frequency, provided it is not too high (<10 MHz).   For a delta 

sigma fractional PLL, this offset might be chosen to be half the phase detector frequency, 

which is the frequency where the noise peaks.  Another possibility for a fractional PLL might 

be a particular offset for a fractional spur.  Based on the assumption of an offset frequency 

being chosen, this chapter discusses when higher order filters make sense, what pole ratios 

might be reasonable to try, and what benefit can be expected from a higher order filter. 

 

Identifying when Additional Poles Can Help 

In the appendix, it has been shown that the theoretical maximum attenuation for the added 

poles is when they are all equal.   Although this is physically impossible for a passive filter, it 

still serves as a good way to make some general guidelines to understand the impact of higher 

order filters.   Another result derived in the appendix is that the zero, T2, and the sum of the 

poles, T1+T3+T4, is roughly independent of filter order.   
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A key parameter is the ratio of the offset frequency to the loop bandwidth. 

 

𝑟 =
𝑂𝑓𝑓𝑠𝑒𝑡

𝐵𝑊
= 

𝜔

𝜔𝑐
 (37.1)   

 

A secondary parameter depends on gamma and the phase margin. 

 

𝛼 =
2

√(1 + 𝛾)2 ∙ 𝑡𝑎𝑛2𝜙 + 4 ∙ 𝛾  − (1 + 𝛾) ∙ 𝑡𝑎𝑛 𝜙
 (37.2)  

 

The following table shows some calculated values for this alpha parameter. 

  Phase Margin (deg) 
  20 25 30 35 40 45 50 55 60 65 70 75 80 

G
am

m
a 

0.01 39.305 49.132 59.980 72.108 85.913 101.981 121.192 144.933 175.507 217.056 277.855 377.202 572.974 

0.02 20.949 25.725 31.055 37.060 43.932 51.962 61.591 73.516 88.897 109.825 140.477 190.597 289.408 

0.05 9.704 11.527 13.595 15.958 18.691 21.913 25.802 30.644 36.915 45.474 58.042 78.627 119.265 

0.1 5.744 6.636 7.657 8.834 10.210 11.844 13.832 16.322 19.564 24.006 30.550 41.295 62.544 

0.2 3.580 4.037 4.560 5.169 5.884 6.742 7.792 9.117 10.853 13.245 16.783 22.613 34.174 

0.5 2.062 2.277 2.524 2.812 3.152 3.562 4.067 4.709 5.556 6.731 8.478 11.372 17.131 

1 1.428 1.570 1.732 1.921 2.145 2.414 2.747 3.172 3.732 4.511 5.671 7.596 11.430 

2 1.031 1.139 1.262 1.406 1.576 1.781 2.034 2.355 2.778 3.365 4.239 5.686 8.565 

5 0.716 0.807 0.912 1.034 1.177 1.348 1.558 1.823 2.171 2.649 3.357 4.523 6.835 

10 0.574 0.664 0.766 0.883 1.021 1.184 1.383 1.632 1.956 2.401 3.055 4.129 6.254 

20 0.485 0.576 0.680 0.798 0.935 1.096 1.290 1.532 1.846 2.274 2.902 3.931 5.963 

50 0.419 0.515 0.621 0.741 0.879 1.039 1.232 1.470 1.778 2.197 2.810 3.812 5.788 

100 0.393 0.491 0.600 0.721 0.859 1.020 1.212 1.449 1.755 2.171 2.779 3.772 5.730 

Table 37.1  Calculated Values of  

 

Based on these parameters, the theoretical benefit for the 3rd order filter over the second order 

filter, and the theoretical benefit for the fourth order filter over the third order filter can be 

derived as done in the appendix. 

3𝑟𝑑 𝑂𝑟𝑑𝑒𝑟 𝐵𝑒𝑛𝑒𝑓𝑖𝑡 ≈ √
(1 + (

𝑟
2 ∙ 𝛼)

2
)
2

(1 + (
𝑟
𝛼)

2
)

 (37.3)  
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4𝑡ℎ 𝑂𝑟𝑑𝑒𝑟 𝐵𝑒𝑛𝑒𝑓𝑖𝑡 ≈ √
(1 + (

𝑟
3 ∙ 𝛼)

2
)
3

(1 + (
𝑟

2 ∙ 𝛼)
2
)
2 (37.4)  

 

These functions are graphed in Figure 37.1 .  One observation to make is that for r/  values 

greater than 10, the lines are parallel and go at 20 dB/decade.   For instance, for r/ = 100 and 

a third order filter, the benefit would be about 24 dB. 

 

Figure 37.1  Theoretical Benefits of Higher Order Filters 

 

r/ 3rd Order vs. 2nd Order 4th Order vs. 3rd Order 

1 −1.1 −0.6 

2 −1.0 −1.2 

3 0.2 −1.2 

4 1.7 −0.7 

5 3.1 0.1 

6 4.3 1.0 

7 5.5 1.8 

8 6.5 2.7 

9 7.4 3.5 

10 8.3 4.2 

Large r/  10 20∙log(r/)−12 20∙log(r/)−16.6 

Table 37.2 Theoretical Maximum Benefits of Higher Order Filters 
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Based on Figure 37.1 , a reasonable assumption is to assume that higher order filters only 

make sense if their theoretical benefit is 1 dB or greater for a given offset frequency.   This is 

summarized in Table 37.3 .  

 

Criteria 3rd Order Filter 4th Order Filter 

0 dB Benefit r = 2.818∙ r = 4.868∙ 

1 dB Benefit r = 3.532∙ r = 6.035∙ 

Table 37.3 Benefits of Higher Order Filters 

 

 Recall that  is a function of gamma and phase margin.  Applying this result to the third order 

filter for various values of gamma and phase margin yields the following table for the r ratio. 

 

 
 Phase Margin (deg) 

 
 20 25 30 35 40 45 50 55 60 65 70 75 80 

G
am

m
a 

0.01 138.8 173.5 211.8 254.7 303.4 360.2 428.1 511.9 619.9 766.6 981.4 1332.3 2023.7 

0.02 74.0 90.9 109.7 130.9 155.2 183.5 217.5 259.7 314.0 387.9 496.2 673.2 1022.2 

0.05 34.3 40.7 48.0 56.4 66.0 77.4 91.1 108.2 130.4 160.6 205.0 277.7 421.2 

0.1 20.3 23.4 27.0 31.2 36.1 41.8 48.9 57.7 69.1 84.8 107.9 145.9 220.9 

0.2 12.6 14.3 16.1 18.3 20.8 23.8 27.5 32.2 38.3 46.8 59.3 79.9 120.7 

0.5 7.3 8.0 8.9 9.9 11.1 12.6 14.4 16.6 19.6 23.8 29.9 40.2 60.5 

1 5.0 5.5 6.1 6.8 7.6 8.5 9.7 11.2 13.2 15.9 20.0 26.8 40.4 

2 3.6 4.0 4.5 5.0 5.6 6.3 7.2 8.3 9.8 11.9 15.0 20.1 30.3 

5 2.5 2.9 3.2 3.7 4.2 4.8 5.5 6.4 7.7 9.4 11.9 16.0 24.1 

10 2.0 2.3 2.7 3.1 3.6 4.2 4.9 5.8 6.9 8.5 10.8 14.6 22.1 

20 1.7 2.0 2.4 2.8 3.3 3.9 4.6 5.4 6.5 8.0 10.3 13.9 21.1 

50 1.5 1.8 2.2 2.6 3.1 3.7 4.4 5.2 6.3 7.8 9.9 13.5 20.4 

100 1.4 1.7 2.1 2.5 3.0 3.6 4.3 5.1 6.2 7.7 9.8 13.3 20.2 

Table 37.4 Required Offset/BW Ratios for One dB Benefit for 3rd Order Filter 
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Applying this result to the third order filter for various values of gamma and phase margin 

yields Table 37.5 . 

 

  Phase Margin (deg) 

  20 25 30 35 40 45 50 55 60 65 70 75 80 

G
am

m
a 

0.01 237.2 296.5 362.0 435.2 518.5 615.5 731.4 874.7 1059.2 1309.9 1676.9 2276.4 3457.9 

0.02 126.4 155.3 187.4 223.7 265.1 313.6 371.7 443.7 536.5 662.8 847.8 1150.3 1746.6 

0.05 58.6 69.6 82.0 96.3 112.8 132.2 155.7 184.9 222.8 274.4 350.3 474.5 719.8 

0.1 34.7 40.0 46.2 53.3 61.6 71.5 83.5 98.5 118.1 144.9 184.4 249.2 377.5 

0.2 21.6 24.4 27.5 31.2 35.5 40.7 47.0 55.0 65.5 79.9 101.3 136.5 206.2 

0.5 12.4 13.7 15.2 17.0 19.0 21.5 24.5 28.4 33.5 40.6 51.2 68.6 103.4 

1 8.6 9.5 10.5 11.6 12.9 14.6 16.6 19.1 22.5 27.2 34.2 45.8 69.0 

2 6.2 6.9 7.6 8.5 9.5 10.7 12.3 14.2 16.8 20.3 25.6 34.3 51.7 

5 4.3 4.9 5.5 6.2 7.1 8.1 9.4 11.0 13.1 16.0 20.3 27.3 41.2 

10 3.5 4.0 4.6 5.3 6.2 7.1 8.3 9.9 11.8 14.5 18.4 24.9 37.7 

20 2.9 3.5 4.1 4.8 5.6 6.6 7.8 9.2 11.1 13.7 17.5 23.7 36.0 

50 2.5 3.1 3.7 4.5 5.3 6.3 7.4 8.9 10.7 13.3 17.0 23.0 34.9 

100 2.4 3.0 3.6 4.4 5.2 6.2 7.3 8.7 10.6 13.1 16.8 22.8 34.6 

Table 37.5 Required Offset/BW Ratios for One dB Benefit for 4th Order Filter  

 

  



Choosing Filter Order and Pole Ratios  

 

327 

 

Choosing the Pole Ratio 

So far, the maximum theoretical effectiveness of higher order filters has been discussed, 

assuming pole ratios of one.  As the pole ratio approaches 100%, the benefit maximum of the 

higher order filter is approached, but this happens with diminishing returns and it is often the 

case that the pole ratio is chosen less than 100%.  For instance, for a passive filter, a 100% 

pole ratio yields the unrealistic result of zero capacitors and infinite resistors.  This section 

discusses the impact of choosing a pole ratio that is less than 100%, while searching for a 

reasonable compromise that gives the majority of the benefit. 

Based on simulations and derivations in the appendix, the attenuation relative to what it would 

be for T31 = 1 would be; 

 

𝑅𝑒𝑙𝑎𝑡𝑖𝑣𝑒 𝐴𝑡𝑡𝑒𝑛𝑢𝑎𝑡𝑖𝑜𝑛 = 20 ∙ 𝑙𝑜𝑔 |
4 ∙ 𝑇31

(1 + 𝑇31)2
| (37.5)  

 

The following figure shows that a pole ratio of 51% gets one within 1 dB of the maximum 

achievable benefit and a pole ratio of 62% gets one within 0.5 dB of the maximum benefit.   

 

 

Figure 37.2  Relative Attenuation for T3/T1 < 100% for r = ∞ 
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In the case of a fourth order filter, the relative attenuation has also been derived in the appendix 

and is as follows: 

 

𝑅𝑒𝑙𝑎𝑡𝑖𝑣𝑒 𝐴𝑡𝑡𝑒𝑛𝑢𝑎𝑡𝑖𝑜𝑛 = 20 ∙ 𝑙𝑜𝑔 |
27 ∙ 𝑇312 ∙ 𝑇43

(1 + 𝑇31 + 𝑇31 ∙ 𝑇43)3
| (37.6) 

 

Table 37.6  shows some of the values calculated from this formula.  To illustrate this table, 

consider a case where both T3/T1 and T4/T3 are 50%. In this case, the attenuation of spurs at 

sufficiently far offsets is 4 dB worse than is theoretically possible with a filter with both these 

pole ratios at 100%.  T3/T1 and T4/T3 both as 100% is unrealizable and for passive filters as 

this leads to infinite resistor values and zero capacitor values.  As a rule of thumb, a realistic 

goal might be to get within 1 dB of the maximum possible attenuation.  For this goal, there is 

no way to get there unless both T3/T1 and T4/T3 are above 60%. 

 

 T3/T1 

10% 20% 30% 40% 50% 60% 70% 80% 90% 100% 

T
4
/T

3
 

10% −34.1 −24.5 −19.7 −16.8 −14.8 −13.5 −12.4 −11.7 −11.1 −10.7 

20% −28.3 −18.9 −14.3 −11.5 −9.6 −8.4 −7.4 −6.8 −6.3 −5.9 

30% −25.0 −15.8 −11.3 −8.7 −6.9 −5.7 −4.9 −4.3 −3.8 −3.5 

40% −22.7 −13.7 −9.4 −6.8 −5.2 −4.1 −3.3 −2.8 −2.4 −2.1 

50% −21.0 −12.2 −8.0 −5.6 −4.0 −3.0 −2.3 −1.8 −1.5 −1.3 

60% −19.7 −11.0 −6.9 −4.6 −3.2 −2.2 −1.6 −1.2 −0.9 −0.7 

70% −18.6 −10.1 −6.1 −3.9 −2.5 −1.7 −1.1 −0.7 −0.5 −0.4 

80% −17.6 −9.3 −5.5 −3.4 −2.1 −1.3 −0.8 −0.4 −0.2 −0.1 

90% −16.8 −8.6 −5.0 −2.9 −1.7 −1.0 −0.5 −0.2 −0.1 0.0 

100% −16.1 −8.1 −4.5 −2.6 −1.5 −0.8 −0.4 −0.1 0.0 0.0 

Table 37.6 Relative Attenuation Values to Maximum for T3/T1 and T4/T3 
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Practical Examples 

Close-In Spur Example 

Consider the case of a fractional PLL with a 10 MHz phase detector frequency and an output 

frequency of 2700.015 MHz.  Suppose that the integer boundary spur at 15 kHz is troublesome 

and the loop bandwidth is 10 kHz.  Does a higher order filter make sense in this case? 

 

In this case, we calculate r = 15 kHz/10 kHz = 1.5.  Table 37.4 suggests a very low phase 

margin of about 20 degrees and an extreme gamma of 50 for just a 1 dB benefit.   So from a 

practical case, the answer is no, a higher order filter does not make sense for reducing this 15 

kHz spur. 

 

Intermediate Offset Spur Example 

Consider the case of a fractional PLL with a 200 kHz phase detector frequency and an output 

frequency of 2700 MHz.  Suppose that phase detector spur at 200 kHz is troublesome and the 

loop bandwidth is 10 kHz.  Does a higher order filter make sense in this case? 

 

In this case, we calculate r = 200 kHz/10kHz = 20.  Looking a Table 37.4 , it looks like a third 

order filter does make sense for most values of gamma and phase margin.   Looking at Table 

37.5 , it looks like a fourth order could make sense if the phase margin is 50 degrees or less, 

but not for a high phase margin design. 

 

Delta Sigma Modulator Noise Example 

Consider the case of a fractional PLL with a 20 MHz phase detector frequency and an output 

frequency of 2700 MHz.  Suppose that delta sigma modulator noise is showing up at 10 MHz 

offset and the loop bandwidth is 100 kHz.   Does a higher order filter make sense in this case? 

 

In this case, we calculate r =10 MHz / 100 kHz = 100.  For such a high r value, the 4th order 

filter will definitely be able to attenuate this noise.  Maybe a third order filter would be 

sufficient, and the extra pole would not be necessary.  In any case, higher order filters 

definitely make sense in this case. 
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Far Offset Spur Example 

Consider the case of an integer PLL with 10 MHz phase detector frequency and an output 

frequency of 2700 MHz.  Suppose integer boundary spur at 10 MHz is an issue and the loop 

bandwidth is 10 kHz.   Does a higher order filter make sense in this case? 

 

In this case, we calculate r=10 MHz / 10kHz = 1000.  Based on all the tables and theory, 

higher order filters can definitely attenuate any spur energy going through the loop filter.  

However, in practice, this spur is likely due to spur energy crosstalking around the loop filter.  

So in this case, one might try a higher order filter, but the likely result is that it does not 

improve the spur as it is caused by crosstalk, not spur energy going through the loop filter. 

 

Active Filter Example 

Consider an active filter with a phase detector frequency of 1 MHz and spur of concern is 1 

MHz with a loop bandwidth of 1 kHz. Does a higher order filter make sense in this case? 

 

In terms of spur attenuation, higher order filters are unlikely to help.  However, the placement 

of a pole after the op-amp is often beneficial to attenuating the op-amp noise, which is 

beneficial.   In the case of an active filter, it is possible to make T3/T1 = 100% or even higher.   

Sometimes one might want to make it higher to get even more attenuation of the op-amp noise. 

 

Conclusion 

This chapter investigated the impact of designing loop filters of higher than second order and 

when it makes sense to do so.  As a general practice for prototyping, it is good to accommodate 

the fourth order filter on the PCB board and then use zero ohm resistors if the extra poles are 

not needed. 

The benefits of higher filter orders depend mainly on how far the noise/spur frequency of 

interest is from the loop bandwidth.  Although fully detailed rules are given, if one considers 

the case for a phase margin of 50 degrees and a gamma of one, these rules suggest a third 

order loop filter adds value in filtering off noise/spurs that is at least ten times the loop 

bandwidth and a fourth order loop filter becomes worthwhile for filtering off noise/spurs that 

is at least 17 times the loop bandwidth. 
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Appendix:  Derivation of Impact of Filter Order 

Approximate Independence of T2 and Sum of the Poles vs. Filter Order 

A key approximation is that the time constant, T2, is roughly independent of filter order.  To 

see this result, recall the following results for the phase margin. 

 

f =     180 + 𝑡𝑎𝑛−1(𝜔𝑐 ∙ 𝑇2)
− 𝑡𝑎𝑛−1(𝜔𝑐 ∙ 𝑇1)−𝑡𝑎𝑛−1(𝜔𝑐 ∙ 𝑇3)−𝑡𝑎𝑛−1(𝜔𝑐 ∙ 𝑇4) 

 

(37.7)  

Using the knowledge that the poles will be at a higher frequency than the loop bandwidth, the 

following approximation can be used: 

 

tan−1(x) ≈ 𝑥 (37.8)  

 

Combining these two formulas yield the following: 

 

f ≈  180 + 𝑡𝑎𝑛−1(𝜔𝑐 ∙ 𝑇2) − 𝑡𝑎𝑛−1[𝜔𝑐 ∙ (𝑇1 + 𝑇3 + 𝑇4)] (37.9)  

 

Recall the definition for gamma: 

𝑇2 =
𝛾

𝜔𝑐2 ∙ (𝑇1 + 𝑇3 + 𝑇4)
 (37.10)  

 

Combining this yields the following approximation: 

f ≈  180 + 𝑡𝑎𝑛−1(𝜔𝑐 ∙ 𝑇2) − 𝑡𝑎𝑛−1 (
𝛾

𝜔𝑐 ∙ 𝑇2
) (37.11)  

 

This equation can be solved for T2 by taking the tangent of both sides. 

𝑇2 ≈
1

𝜔𝑐
∙  

2 ∙ 𝛾

√(1 + 𝛾)2 ∙ 𝑡𝑎𝑛2𝜙 + 4 ∙ 𝛾  − (1 + 𝛾) ∙ 𝑡𝑎𝑛 𝜙
 (37.12)  

 

Here we have a function for T2 that involves only phase margin, loop bandwidth and gamma.  

This demonstrates that T2 is mainly independent of filter order and this also implies that the 

sum of the poles is mainly independent of filter order. 

𝑇1 + 𝑇3 + 𝑇4 =
𝛾

𝜔𝑐2 ∙ 𝑇2
 (37.13)  
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Derivation that Maximum Attenuation is when All Poles are Equal 

Starting with the approximation that T2 is independent of filter order, one can calculate the 

benefit of the pole, T1 by taking the filter gain with this pole and dividing it without it.   

 

𝐴(𝜔) ≈ √(1 + 𝜔2 ∙ 𝑇12) ∙ (1 + 𝜔2 ∙ 𝑇32) ∙ (1 + 𝜔2 ∙ 𝑇42) (37.14)  

 

We know that the sum of the poles is approximately constant, so using the method of Lagrange 

multipliers, we take a derivative of all the constraints and get the following system of 

equations.  Note that we choose to maximize the square of the filter attenuation to simplify 

the mathematics. 

 

𝐹(𝐴2, 𝜆) = (1 + 𝜔2 ∙ 𝑇12) ∙ (1 + 𝜔2 ∙ 𝑇32) ∙ (1 + 𝜔2 ∙ 𝑇42) 

     − 𝜆 ∙ (𝑇1 + 𝑇3 + 𝑇4 −
𝛾

𝜔𝑐2 ∙ 𝑇2
) 

(37.15)  

 

Taking the derivative with respect to T1, T3, T4, and  gives a system of equations. 

 

𝑑𝐹
𝑑𝑇1⁄    =  0

= 2 ∙ 𝜔2 ∙ 𝑇12 ∙ (1 + 𝜔2 ∙ 𝑇32) ∙ (1 + 𝜔2 ∙ 𝑇42) −  𝜆
∙ 𝑇1      

(37.16)  

 

𝑑𝐹
𝑑𝑇3⁄    =  0

= 2 ∙ 𝜔2 ∙ 𝑇32 ∙ (1 + 𝜔2 ∙ 𝑇12) ∙ (1 + 𝜔2 ∙ 𝑇42) −  𝜆
∙ 𝑇3      

(37.17)  

 

𝑑𝐹
𝑑𝑇4⁄    =  0 = 2 ∙ 𝜔2 ∙ 𝑇42 ∙ (1 + 𝜔2 ∙ 𝑇12) ∙ (1 + 𝜔2 ∙ 𝑇32) −  𝜆 ∙ 𝑇4  (37.18)  

 

𝑑𝐹
𝑑𝜆⁄       =  𝑇1 + 𝑇3 + 𝑇4 −

𝛾

𝜔𝑐2 ∙ 𝑇2
 (37.19)  

 

The first three equations imply that all the poles are equal. 

 

𝑇1 = 𝑇3 = 𝑇4 (37.20)  

This example was the fourth order filter, but the conclusion is the same that all the poles 

should theoretically be equal for the maximum attenuation. 



Choosing Filter Order and Pole Ratios  

 

333 

 

Derivation for the Benefit of Higher Order Filters 

Using the expression (37.14), we can derive an expression for the theoretical maximum 

benefit of a third order filter over a second order one. 

 

𝐴3𝑟𝑑,𝑀𝑎𝑥(𝜔)

𝐴2𝑛𝑑,𝑀𝑎𝑥(𝜔)
≈ √

(1 + 𝜔2 ∙ 𝑇13𝑟𝑑
2)
2

(1 + 𝜔2 ∙ 𝑇12𝑛𝑑
2)

= √
(1 + 𝜔2 ∙ (

𝛾
2 ∙ 𝜔𝑐2 ∙ 𝑇2

)
2
)
2

(1 + 𝜔2 ∙ (
𝛾

𝜔𝑐2 ∙ 𝑇2
)
2
)

 (37.21)   

 

Combine (37.2) and (37.12) to get the following: 

 

1

𝛼
 =  

√(1 + 𝛾)2 ∙ 𝑡𝑎𝑛2𝜙 + 4 ∙ 𝛾  − (1 + 𝛾) ∙ 𝑡𝑎𝑛 𝜙

2
  ≈  

𝛾

 𝜔𝑐 ∙ 𝑇2
   (37.22)    

 

Combining (37.1) with (37.22) allows the following substitution: 

(
𝑟

𝛼
)
2

→ 𝜔2  ∙  (
𝛾

𝜔𝑐2 ∙ 𝑇2
)
2

 (37.23)   

 

This can be rearranged as follows: 

𝐴3𝑟𝑑,𝑀𝑎𝑥(𝑟 ∙ 𝛼)

𝐴2𝑛𝑑,𝑀𝑎𝑥(𝑟 ∙ 𝛼)
≈ √

(1 + (
𝑟

2 ∙ 𝛼)
2
)
2

(1 + (
𝑟
𝛼)

2
)

 (37.24)   

 

Here we have an expression that relates the third order attenuation benefits as only a function 

, which is a function of the ratio of the offset to loop bandwidth, phase margin, and gamma.  

Similar reasoning can be used to derive the theoretical benefits of a fourth order filter over a 

third one. 

 

𝐴4𝑡ℎ,𝑀𝑎𝑥(𝑟 ∙ 𝛼)

𝐴3𝑟𝑑,𝑀𝑎𝑥(𝑟 ∙ 𝛼)
≈ √

(1 + (
𝑟

3 ∙ 𝛼)
2
)
3

(1 + (
𝑟

2 ∙ 𝛼)
2
)
2 (37.25)   
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Derivation of Formula for Attenuation Relative to Maximum Attenuation for Large Offset 

Recall that the open loop gain is as follows: 

 

|𝐺(𝜔)|  =
𝐾𝑃𝐷 ∙ 𝐾𝑉𝐶𝑂
𝐴0 ∙ 𝜔2

∙ √
1 + 𝜔2 ∙ 𝑇22

(1 + 𝜔2 ∙ 𝑇12) ∙ (1 + 𝜔2 ∙ 𝑇32) ∙ (1 + 𝜔2 ∙ 𝑇42)
 (37.26)  

The sum of the poles has been shown to be approximately constant and therefore we can say 

that: 

 

𝜅 = 𝑇1 + 𝑇3 + 𝑇4 = 𝑇1 ∙ (1 + 𝑇31 + 𝑇43 ∙ 𝑇31) (37.27)  

 

It therefore follows that: 

 

𝑇1 =
𝜅

1 + 𝑇31 + 𝑇43 ∙ 𝑇31
 (37.28)  

 

𝑇3 =
𝜅 ∙ 𝑇31

1 + 𝑇31 + 𝑇43 ∙ 𝑇31
 (37.29)  

 

𝑇4 =
𝜅 ∙ 𝑇43 ∙ 𝑇31

1 + 𝑇31 + 𝑇43 ∙ 𝑇31
 (37.30)  

 

Now we can reason that T2, the sum of the poles, and A0 is roughly constant as a function of 

filter order.  Now also consider an approximation for large offsets for . 

 

For the third order case, we get: 

 

|𝐺(𝜔, 𝑇31)|  =
𝐾𝑃𝐷 ∙ 𝐾𝑉𝐶𝑂 ∙ 𝑇2 ∙ (1 + 𝑇31)2

𝐴0 ∙ 𝜔3 ∙ 𝜅2 ∙ 𝑇31
 (37.31)  
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Now consider the ratio of this arbitrary gain to a gain with T31=1. 

 

|𝐺(𝜔, 1)| 

|𝐺(𝜔, 𝑇31)|
=

4 ∙ 𝑇31

(1 + 𝑇31)2
 (37.32)  

 

For the fourth order case, we get: 

 

|𝐺(𝜔, 𝑇31)|  =
𝐾𝑃𝐷 ∙ 𝐾𝑉𝐶𝑂 ∙ 𝑇2 ∙ (1 + 𝑇31 + 𝑇31 ∙ 𝑇43)3

𝐴0 ∙ 𝜔4 ∙ 𝜅3 ∙ 𝑇312 ∙ 𝑇43
 (37.33)  

 

Now consider the ratio of this arbitrary gain to a gain with T31=T43=1. 

 

|𝐺(𝜔, 1,1)| 

|𝐺(𝜔, 𝑇31, 𝑇43)|
=

27 ∙ 𝑇312 ∙ 𝑇43

(1 + 𝑇31 + 𝑇31 ∙ 𝑇43)3
 (37.34)  

 

Note that this derivation implies that this result is independent of phase margin or gamma, 

which is also confirmed by simulations.  Recall that there were some approximations 

introduced, but simulations confirm that these results are relatively true.  The results presented 

were taken by doing 20∙log of this result. 
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Chapter 38      Equations for a Passive Second Order Loop Filter  

 

Introduction 

The second order loop filter is the most rudimentary loop filter and allows one to explicitly 

solve for the component values in closed form.  It has the smallest resistor thermal noise and 

largest capacitor next to the VCO to minimize the impact of VCO input capacitance.  This 

filter also has the most tolerance to variations in VCO gain and charge pump gain.  In cases 

where the first spur to be filtered is less than 10 times the loop bandwidth frequency, filter 

orders higher than third order do not provide much real improvement in spur levels.  For the 

second order filter T3 = T4 = T31 = T43 = 0. 

 

Loop Filter Impedance, Pole, and Zero 

 

KPD  

R2

C2

C1

 

Figure 38.1  A Second Order Passive Loop Filter 

 

The transfer function of a second order loop filter is given below: 

 

𝑍(𝑠) =
1 + 𝑠 ∙ 𝑇2

𝑠 ∙ 𝐴0 ∙ (1 + 𝑠 ∙ 𝑇1)
=

1 + 𝑠 ∙ 𝐶2 ∙ 𝑅2

𝑠 ∙ (𝐶1 + 𝐶2) ∙ (1 + 𝑠 ∙
𝐶1 ∙ 𝐶2 ∙ 𝑅2
𝐶1 + 𝐶2 )

 (38.1)   

 

From the above equation, it should be clear: 

 

𝑇2 = 𝑅2 ∙ 𝐶2 (38.2)   

 

𝑇1 =
𝐶1 ∙ 𝐶2 ∙ 𝑅2

𝐶1 + 𝐶2
 (38.3)   

 

𝐴0 = 𝐶1 + 𝐶2 (38.4)   
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A system of two equations and two unknowns can be established by calculating the phase 

margin and also setting the derivative of the phase margin equal to zero at the loop 

bandwidth. 

 

𝜙 = 180 + 𝑎𝑟𝑐𝑡𝑎𝑛(𝜔𝑐 ∙ 𝑇2) − 𝑎𝑟𝑐𝑡𝑎𝑛(𝜔𝑐 ∙ 𝑇1) (38.5)   

 

𝑇2 =
𝛾

𝜔𝑐2 ∙ 𝑇1
 (38.6)   

 

Substituting (38.6) into (38.5), taking the tangent of both sides, and then solving yields: 

 

𝑇1 =
√(1 + 𝛾)2 ∙ 𝑡𝑎𝑛2𝜙 + 4 ∙ 𝛾 − (1 + 𝛾) ∙ tan𝜙

2 ∙ 𝜔𝑐
 (38.7)  

 

The time constant T2 can now be easily found using equation (38.6).  The total loop filter 

capacitance, A0, can be found and C1 can be calculated. 

 

𝐴0 =
𝐶1 ∙ 𝑇2

𝑇1
=
𝐾𝑃𝐷 ∙ 𝐾𝑉𝐶𝑂
𝑁 ∙ 𝜔𝑐2

∙ √
1 + 𝜔𝑐2 ∙ 𝑇22

1 + 𝜔𝑐2 ∙ 𝑇12
 (38.8)  

 

Once the total capacitance is known, the components can be easily found: 

𝐶1 = 𝐴0 ∙
𝑇1

𝑇2
 (38.9)  

𝐶2 = 𝐴0 − 𝐶1 (38.10)  

 

𝑅2 =
𝑇2

𝐶2
=
𝐾𝑃𝐷 ∙ 𝐾𝑉𝐶𝑂
𝑁 ∙ 𝜔𝑐2

 
(38.11)  
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The Degenerate 2nd Order Filter with →0 

One interesting case is when =0.  It turns out that this makes C1=0, which would theoretically 

would be unstable for a charge pump PLL because the entire charge pump current would create a 

voltage across R2.  Nevertheless, this still can be done and it turns out that the input capacitance 

of the VCO actually makes C1 effectively greater than zero.  To derive this case, take an 

approximation of equation (38.6) and (38.7) and take the limit as →0. 

𝑇2 =
𝛾

𝜔𝑐2 ∙ 𝑇1
= 𝑙𝑖𝑚

𝛾→0
{
𝛾

𝜔𝑐2
2 ∙ 𝜔𝑐

√(1 + 𝛾)2 ∙ 𝑡𝑎𝑛2𝜙 + 4 ∙ 𝛾 − (1 + 𝛾) ∙ tan𝜙
} (38.12)  

 

In this expression, both the numerator and denominator go to zero.  Simplifying and using 

L’Hopital’s rule to take the derivative with respect to  for both the numerator and denominator 

yields the following. 

 

𝑇2 =
2

𝜔𝑐
∙ 𝑙𝑖𝑚
𝛾→0

{

𝑑
𝑑𝛾⁄ (𝛾)

𝑑
𝑑𝛾⁄ (√(1 + 𝛾)2 ∙ 𝑡𝑎𝑛2𝜙 + 4 ∙ 𝛾 − (1 + 𝛾) ∙ tan𝜙)

}

=
2

𝜔𝑐
∙ {

1

2 ∙ 𝑡𝑎𝑛2𝜙 + 4
2 ∙ tan𝜙 − tan𝜙

} =
tan𝜙

𝜔𝑐
 

(38.13)  

 

In this way, C1 is already known to be zero and C2 and R2 can be solved for as normal.  Again, it 

is important to stress that with no C1 capacitor, this is theoretically unstable for a charge pump 

PLL, but can be stable if the VCO has a nonzero input capacitance to make up for the missing C1. 

 

Conclusion 

The formulas for the second order passive loop filter have been presented in this chapter.  The 

second order filter has an elegant closed form solution for the component values and also tends the 

most simple and most stable, but higher order filters spurs if they are far outside the loop 

bandwidth.   

 

Reference 

[1] Keese, William O. An Analysis and Performance Evaluation for a Passive Filter Design 

technique for Charge Pump Phase-Locked Loops.  Application Note 1001, Texas Instruments 

  



   342         Equations for a Passive Second Order Loop Filter 

                              

Appendix A:  A Second Order Loop Filter Design 

 

Design Specifications 

Symbol Description Value Units 

BW Loop Bandwidth 10 kHz 

f Phase Margin 49.2 degrees 

 
Gamma Optimization 

Parameter 
1.024 none 

KPD Charge Pump Gain 1 mA 

KVCO VCO Gain 60 MHz/V 

fVCO Output Frequency 1960 MHz 

fPD Phase detector frequency 50 kHz 

 

Calculate Poles and Zero 

 

𝑁 =
𝑓𝑉𝐶𝑂
𝑓𝑃𝐷

 (38.14)  

 

 

𝜔𝑐 = 2𝜋 ∙ 𝐵𝑊 (38.15)  

 

 

𝑇1 =
√(1 + 𝛾)2 ∙ 𝑡𝑎𝑛2𝜙 + 4 ∙ 𝛾 − (1 + 𝛾) ∙ tan𝜙

2 ∙ 𝜔𝑐
 (38.16)  

 

 

𝑇2 =
𝛾

𝜔𝑐2 ∙ 𝑇1
 (38.17)  

 

 

Calculate Loop Filter Coefficient 

 

𝐴0 =
𝐶1 ∙ 𝑇2

𝑇1
=
𝐾𝑃𝐷 ∙ 𝐾𝑉𝐶𝑂
𝑁 ∙ 𝜔𝑐2

∙ √
1 + 𝜔𝑐2 ∙ 𝑇22

1 + 𝜔𝑐2 ∙ 𝑇12
 (38.18)  
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Solve For Components 

 

 

𝐶1 = 𝐴0 ∙
𝑇1

𝑇2
 (38.19)  

 

 

𝐶2 = 𝐴0 − 𝐶1 (38.20)  

 

 

𝑅2 =
𝑇2

𝐶2
 (38.21)  

 

Results 

 

Symbol Description Value Units 

N N Counter Value 39200 none 

c Loop Bandwidth 6.283  x  104 rad/s 

T1 Loop Filter Pole  5.989  x 10-6 s 

T2 Loop Filter Zero  4.331  x 10-5 s 

A0 Total Capacitance 1.052 nF 

C1 Loop Filter Capacitor 0.145 nF 

C2 Loop Filter Capacitor 0.906 nF 

R2 Loop Filter Resistor 47.776 kW 
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Chapter 39      Equations for a Passive Third Order Loop Filter  

 

Introduction 

The third order loop filter is useful in filtering spurs or noise caused by the PLL that is at an offset 

frequency of ten times the loop bandwidth or greater.  Designing the loop filter involves solving 

for the time constants, and then determining the loop filter components from the time constants.  

The time constants can be calculated either by introducing a closed form approximate solution or 

using numerical methods.  From these time constants, the components can be found.  In addition 

to specifying the loop bandwidth, (c), phase margin (f), and gamma (), the user also has to 

specify the pole ratio, T31.  This chapter discusses how to determine the component values for a 

passive filter from these parameters.   

 

Calculating the Loop Filter Impedance and Time Constants 

KPD  

R3

R2

C2

 

C1 C3

 

Figure 39.1  Third Order Passive Loop Filter 

 

For the loop filter shown in Figure 39.1 , the impedance is given below: 

 

𝑍(𝑠) = 𝐴0 ∙
1 + 𝑠 ∙ 𝑇2

𝑠 ∙ 𝐴0 ∙ (1 + 𝑠 ∙ 𝑇1) ∙ (1 + 𝑠 ∙ 𝑇3)
 (39.1)  

 

𝑇2 = 𝑅2 ∙ 𝐶2 (39.2)  

 

𝐴0 = 𝐶1 + 𝐶2 + 𝐶3 (39.3)  

 

𝐴1 = 𝐴0 ∙ (𝑇1 + 𝑇3)
= 𝐶2 ∙ 𝐶3 ∙ 𝑅2 + 𝐶1 ∙ 𝐶2 ∙ 𝑅2 + 𝐶1 ∙ 𝐶3 ∙ 𝑅3 + 𝐶2 ∙ 𝐶3 ∙ 𝑅3 

(39.4)  

 

𝐴2 = 𝐴0 ∙ 𝑇1 ∙ 𝑇3 = 𝐶1 ∙ 𝐶2 ∙ 𝐶3 ∙ 𝑅2 ∙ 𝑅3 (39.5)  
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Loop Filter Calculation 

Calculation of Time Constants 

The gamma optimization parameter is defined with the equation as follows: 

 

𝑇2 =
𝛾

𝜔𝑐2 ∙ 𝑇1 ∙ (1 + 𝑇31)
 (39.6)  

The phase margin is given by: 

 

𝜙 = 𝑡𝑎𝑛−1(𝜔𝑐 ∙ 𝑇2) − 𝑡𝑎𝑛−1(𝜔𝑐 ∙ 𝑇1) − 𝑡𝑎𝑛−1(𝜔𝑐 ∙ 𝑇3) (39.7)  

Substituting in the expression for T2 yields the following: 

 

𝜙 = 𝑡𝑎𝑛−1 (
𝛾

𝜔𝑐 ∙ 𝑇1 ∙ (1 + 𝑇31)
) − 𝑡𝑎𝑛−1(𝜔𝑐 ∙ 𝑇1) − 𝑡𝑎𝑛−1(𝜔𝑐 ∙ 𝑇31 ∙ 𝑇1) (39.8)  

 

The only unknown in this is equation is T1 and it can be found by numerical methods.   If an 

approximation is acceptable, one can introduce the following: 

  

tan(𝑥) ≈ 𝑥 ≈ 𝑡𝑎𝑛−1(𝑥) (39.9)  

 

Using this approximate rule, an elegant solution for T1 can be found. 

 

𝑇1 ≈  
𝑠𝑒𝑐(𝜙) − tan (𝜙)

𝜔𝑐 ∙ (1 + 𝑇31)
 (39.10)  

 

So whether numerical methods or approximation (39.10) are used to find T1, the other time 

constants can easily be found. 

 

𝑇3 = 𝑇1 ∙ 𝑇31 (39.11)  

   

𝑇2 =
𝛾

𝜔𝑐 ∙ (𝑇1 + 𝑇3)
 (39.12)  
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Solution of Component Values from Time Constants 

Calculation of Filter constants 

The first step is to calculate the filter constants: 

 

𝐴0 =
𝐾𝑃𝐷 ∙ 𝐾𝑉𝐶𝑂
𝜔𝑐2 ∙ 𝑁

∙ √
1 + 𝜔𝑐2 ∙ 𝑇22

(1 + 𝜔𝑐2 ∙ 𝑇12) ∙ (1 + 𝜔𝑐2 ∙ 𝑇32)
 (39.13)  

 

𝐴1 = 𝐴0 ∙ (𝑇1 + 𝑇3) (39.14)  

 

𝐴2 = 𝐴0 ∙ 𝑇1 ∙ 𝑇3 (39.15)  

 

Finding Components from Filter Coefficients 

Recall that the loop filter components relate to the time constants in the following manner for a 

passive filter.   

𝑇2 = 𝑅2 ∙ 𝐶2 (39.16)  

 

𝐴0 = 𝐶1 + 𝐶2 + 𝐶3 (39.17)  

 

𝐴1 = 𝐶2 ∙ 𝐶3 ∙ 𝑅2 + 𝐶1 ∙ 𝐶2 ∙ 𝑅2 + 𝐶1 ∙ 𝐶3 ∙ 𝑅3 + 𝐶2 ∙ 𝐶3 ∙ 𝑅3 (39.18)  

 

𝐴2 = 𝐶1 ∙ 𝐶2 ∙ 𝐶3 ∙ 𝑅2 ∙ 𝑅3 (39.19)  

 

Here we have a system of four equations with five unknowns.  As this system has infinitely many 

solutions, it makes sense to impose an additional constraint.   In this case, a very good choice would 

be to maximize the value of C3 in order to minimize the impact of the VCO input capacitance.  

This choice is also close to choice that would that would minimize the resistor noise due to resistor 

R3.    Using these equations to find C3 as an expression of C1 yields the following: 

 

𝐶3 =   
−𝑇22 ∙ 𝐶12 + 𝑇2 ∙ 𝐴1 ∙ 𝐶1 − 𝐴2 ∙ 𝐴0

𝑇22 ∙ 𝐶1 − 𝐴2
 (39.20)  
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By taking the derivative of this equation with respect to C1 and treating C3 as a function of C1 and 

setting dC3/dC1=0, we obtain the following expression for C1.  Further justification for this 

derivation is in the appendix. 

 

𝐶1 =  
𝐴2

𝑇22
∙ (1 + √1 +

𝑇2

𝐴2
∙ (𝑇2 ∙ 𝐴0 − 𝐴1)) (39.21)  

 

Once C1 is known, C3 can be found and then C2 and the other components can now be derived. 

 

𝐶2 = 𝐴0 − 𝐶1 − 𝐶3 (39.22)  

 

𝑅2 =   
𝑇2

𝐶2
 (39.23)  

 

𝑅3 =   
𝐴2

𝐶1 ∙ 𝐶3 ∙ 𝑇2
 (39.24)  

 

 

 

Conclusion 

This chapter has presented a method for calculating a third order passive loop filter.  Unlike the 

second order filter equations, there is no closed form solution for the time constants, although it is 

easy to solve for them numerically.  Once these time constants are known, then the component 

values can be calculated.  For those who wish to avoid these numerical methods, simplified 

approximate equations for the time constants have also been presented. 

Regardless of the filter calculation method used, the VCO input capacitance adds to capacitor C3, 

so this component should be at least four times the VCO input capacitance.  If this is not possible 

then try decreasing the value of T31 so that C3 will become larger and R3 will become smaller.  

Choosing C3 as large as possible also corresponds to choosing R3 as small as possible.  It is 

desirable to not have the R3 resistor too large, or else the thermal noise from this resistor can add 

to the out of band phase noise. 

 

References 

[1] Keese, William O. An Analysis and Performance Evaluation for a Passive Filter Design 

technique for Charge Pump Phase-Locked Loops.  Application Note 1001, Texas Instruments 
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Appendix: Choosing C1 to Maximize C3  

This appendix shows the justification for the optimal choice of C1 to maximize C3.  This involves 

finding the critical point of the equation, verifying that this is a maximum, and then ensuring that 

this leads to positive component values. 

 

Find the Critical Points for the Expression for C3 in terms of C1 and Find the Critical Point 

The first step is to apply the first derivative to equation (39.20) and equate this to zero in order to 

find the critical points. 

 

𝑑𝐶3

𝑑𝐶1
 =  − 

𝐶12 − (
2 ∙ 𝐴2
𝑇22

) ∙ 𝐶1 + (
𝐴1 ∙ 𝐴2
𝑇23

−
𝐴2 ∙ 𝐴0
𝑇22

)

(𝐶1 −
𝐴2
𝑇22

)
2 = 0 (39.25)  

 

By setting the numerator equal to zero and solving, the following result is obtained. 

𝐶1 =   
𝐴2

𝑇22
(1 ± √1 +

𝑇2

𝐴2
∙ (𝑇2 ∙ 𝐴0 − 𝐴1)) (39.26)   

 

Find the Correct Critical Point and Verify that it is a Global Maximum for C1>0 

Recall that if the second derivative is negative, it indicates the critical point is a local maximum, 

and if it is positive, it indicates that it is a local minimum.  Taking another derivative of (39.25) 

yields: 

𝑑2𝐶3

𝑑𝐶12
 =  − 

2 ∙ 𝐴2 ∙ 𝐴0 ∙ (𝑇1 ∙ 𝑇3 + 𝑇2 ∙ (𝑇2 − 𝑇1 − 𝑇3))

𝑇24 ∙ (𝐶1 −
𝐴2
𝑇22

)
3  (39.27)   

 

The numerator of this expression is always positive provided T2>T1+T3, which will be the case 

as it is a requirement for stability.  Therefore, the requirement on C1 is that: 

𝐶1 >   
𝐴2

𝑇22
 (39.28)    

 

This will be satisfied if and only if we take the positive root in expression (39.26). 

𝐶1 =   
𝐴2

𝑇22
(1 + √1 +

𝑇2

𝐴2
∙ (𝑇2 ∙ 𝐴0 − 𝐴1)) (39.29)  
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Proof that All Components will be Positive for T31<100% 

It is possible to choose component C1 so that this leads to negative component values.   However, 

if C1 is chosen in accordance to (39.29), then it can be proven that this is never the case.  The 

approach to doing this is to first show that C3 is positive, then C2 is positive, then it easily follows 

that R2 and R3 are positive as well. 

 

Proof that C3 Will Always be Positive  

The expression for C3 can be expressed in terms of time constants, C1, and A0. 

 

𝐶3 =   
−𝑇22 ∙ 𝐶12 + 𝑇2 ∙ 𝐴0 ∙ (𝑇1 + 𝑇3) ∙ 𝐶1 − 𝑇1 ∙ 𝑇3 ∙ 𝐴02

𝑇22 ∙ 𝐶1 − 𝑇1 ∙ 𝑇3 ∙ 𝐴0
 (39.30)   

By using inequality (39.28), we can see that the denominator will be positive for the optimal choice 

of C1, but the numerator is not so obvious.  The quadratic formula can be applied and the result 

simplified to yield the restrictions on C1 which are necessary to make C3>0.  It is assumed, by 

definition, that T3>T1. 

𝑇3

𝑇2
∙ 𝐴0 < 𝐶1 <

𝑇1

𝑇2
∙ 𝐴0 (39.31)    

Now applying these above restrictions to the value of C1 shows that they will be satisfied, provided 

the following conditions are met. 

𝑇2 > 𝑇1 > 𝑇3 (39.32)    

Note that T2>T1 is required for stability and T1>T3 is satisfied since T31<100%.  It therefore 

follows that C3 will always be positive. 

 

Proof that C1 is Always Positive 

To prove that C2 is always positive, the first step is to solve for C2 in terms of C1 using equations 

(39.16), (39.17), (39.18), and (39.19).   

𝐶2 = 𝐴0 ∙

𝑇1 ∙ 𝑇3
𝑇2 + 𝑇2 − 𝑇1 − 𝑇3

𝑇2 −
𝐴2

𝑇2 ∙ 𝐶1

  

 

(39.33)   

One can reason that the denominator in expression (39.33) is positive by virtue of (39.28) and one 

can reason that the numerator is positive by virtue of the stability criteria that T2 > T1+T3.  It 

therefore follows that C2 will be always positive for filters that are designed to be stable.  
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Appendix A:  A Third Order Loop Filter Design 

 

Design Specifications 

 

Symbol Description Value Units 

BW Loop Bandwidth 2 kHz 

f Phase Margin 47.1 degrees 

 
Gamma Optimization 

Parameter 
1.136 none 

KPD Charge Pump Gain 4 mA 

KVCO VCO Gain 30 MHz/V 

fVCO Output Frequency 1392 MHz 

fPD 
Phase detector 

frequency 
60 kHz 

T31 
Ratio of pole T3 to 

Pole T1 
0.6 none 

 

Calculate Poles and Zero 

 

𝑁 = 
𝑓𝑉𝐶𝑂
𝑓𝑃𝐷

 (39.34)  

 

𝜔𝑐 =  2𝜋 ∙ 𝐵𝑊 (39.35)  

T1 is the only unknown.  Solve for this using numerical methods. 

 

𝜙 =  𝑡𝑎𝑛−1 (
𝛾

𝜔𝑐 ∙ 𝑇1 ∙ (1 + 𝑇31)
) − 𝑡𝑎𝑛−1(𝜔𝑐 ∙ 𝑇1) − 𝑡𝑎𝑛−1(𝜔𝑐 ∙ 𝑇1 ∙ 𝑇31) (39.36)  

 

𝑇3 = 𝑇1 ∙ 𝑇31 (39.37)  

 

𝑇2 =  
𝛾

𝜔𝑐2 ∙ (𝑇1 + 𝑇3)
 (39.38)  

  



Equations for a Passive Third Order Loop Filter  

 

351 

 

Calculate Loop Filter Coefficients  

 

𝐴0 =  
𝐾𝑃𝐷 ∙ 𝐾𝑉𝐶𝑂
𝜔𝑐2 ∙ 𝑁

∙ √
1 + 𝜔𝑐2 ∙ 𝑇22

(1 + 𝜔𝑐2 ∙ 𝑇12) ∙ (1 + 𝜔𝑐2 ∙ 𝑇32)
 (39.39)  

 

𝐴1 =  𝐴0 ∙ (𝑇1 + 𝑇3) (39.40)  

 

𝐴2 =  𝐴0 ∙ 𝑇1 ∙ 𝑇3 (39.41)  

 

Symbol Description Value Units 

N N Counter Value 23200 none 

c Loop Bandwidth 1.2566  x  104 rad/s 

T1 Loop Filter Pole 2.0333  x 10-5 s 

T2 Loop Filter Zero 2.2112  x 10-4 s 

T3 Loop Filter Zero 1.2200  x 10-5 s 

A0 Total Capacitance 92.6372 nF 

A1 
First order loop filter 

coefficient 
3.0138  x 10-3  nF∙s 

A2 
Second Order loop filter 

coefficient 
2.2980  x 10-8 nF∙s2 

 

  

Solve For Components 

 

 

𝐶1 =  
𝐴2

𝑇22
∙ (1 + √1 +

𝑇2

𝐴2
∙ (𝑇2 ∙ 𝐴0 − 𝐴1)) (39.42)  

 

 

𝐶3 =  
−𝑇22 ∙ 𝐶12 + 𝑇2 ∙ 𝐴1 ∙ 𝐶1 − 𝐴2 ∙ 𝐴0

𝑇22 ∙ 𝐶1 − 𝐴2
 (39.43)  
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𝐶2 = 𝐴0 − 𝐶1 − 𝐶3 (39.44)  

 

𝑅2 =  
𝑇2

𝐶2
 (39.45)  

 

𝑅3 =  
𝐴2

𝐶1 ∙ 𝐶3 ∙ 𝑇2
 (39.46)  

 

Results 

 

Symbol Description Value Units 

C1 Loop Filter Capacitor 6.5817 nF 

C2 Loop Filter Capacitor 85.5896 nF 

C3 Loop Filter Capacitor 0.4660 nF 

R2 Loop Filter Resistor 2.5835 kW 

R3 Loop Filter Resistor 33.8818 kW 
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Chapter 40      Equations for a Passive Fourth Order Loop Filter  

 

Introduction 

The fourth order loop becomes worthwhile to consider when the spur or PLL noise energy to be 

filtered is at an offset of about twenty times the loop bandwidth or greater.  In the case of a delta 

sigma PLL of order three or higher, a fourth order loop filter is often beneficial to reduce the delta 

sigma modulator that peaks around half of the phase detector frequency. 

More added complexity comes with the 4th order loop filter design, especially in terms of the 

equations for calculating the component values from the loop filter coefficients.  One oddity that 

comes is that it is actually possible to design a stable fourth order loop filter that has all real 

components, yet has complex poles.  Although this may prove advantageous in some pathological 

situations, this chapter assumes all poles in the filter are real.   

The fourth order passive filter has seven component values, but only 5 loop parameters (bandwidth, 

phase margin, gamma, T3/T1, and T4/T3); this leaves two components to be freely chosen.  Ideally, 

one wants to choose them to maximize the component C4, but the exact equations are complicated, 

and these values need to be carefully chosen to ensure it does not lead to negative component 

values.  The basic strategy presented in this chapter is to design a third order loop filter in order to 

determine a good choice for the components C1 and R3 and then find the other components in the 

filter.  Although this solution does not yield the maximum possible value for C4, it comes fairly 

close.      

 

Calculating the Loop Filter Impedance and Time Constants 

KPD  

R3

R2

C2

 

C1 C3

R4

 

C4

 

Figure 40.1  Fourth Order Passive Loop Filter 

 

For the loop filter shown in Figure 40.1 , the impedance is given below: 

 

𝑍(𝑠) =
1 + 𝑠 ∙ 𝑇2

𝑠 ∙ 𝐴0 ∙ (1 + 𝑠 ∙ 𝑇1) ∙ (1 + 𝑠 ∙ 𝑇3) ∙ (1 + 𝑠𝑇4)
 (40.1)  
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Loop Filter Calculation 

Calculation of Time Constants 

The phase margin is given by: 

 

𝜙 = 𝑡𝑎𝑛−1(𝜔𝑐 ∙ 𝑇2) − 𝑡𝑎𝑛−1(𝜔𝑐 ∙ 𝑇1) − 𝑡𝑎𝑛−1(𝜔𝑐 ∙ 𝑇3) − 𝑡𝑎𝑛−1(𝜔𝑐 ∙ 𝑇4) (40.2)  

 

𝜙 = 𝑡𝑎𝑛−1 (
𝛾

𝜔𝑐 ∙ 𝑇1 ∙ (1 + 𝑇31 + 𝑇43 ∙ 𝑇31)
) − 𝑡𝑎𝑛−1(𝜔𝑐 ∙ 𝑇1)

− 𝑡𝑎𝑛−1(𝜔𝑐 ∙ 𝑇3) − 𝑡𝑎𝑛−1(𝜔𝑐 ∙ 𝑇4) 
(40.3)  

 

Now T1 is the only unknown in the equation above, and this can be solved numerically for T1, and 

afterwards, T2, T3, and T4 can easily be found.   

 

𝑇3 = 𝑇1 ∙ 𝑇31 (40.4)  

 

𝑇4 = 𝑇3 ∙ 𝑇43 (40.5)  

 

𝑇2 =
𝛾

𝜔𝑐2 ∙ (𝑇1 + 𝑇3 + 𝑇4)
 (40.6)  

 

Solution of Component Values from Time Constants 

Calculation of Filter Impedance Coefficients 

The loop filter coefficients can be calculated as follows: 

 

𝐴0 =
𝐾𝑃𝐷 ∙ 𝐾𝑉𝐶𝑂
𝜔𝑐2 ∙ 𝑁

∙ √
1 + 𝜔𝑐2 ∙ 𝑇22

(1 + 𝜔𝑐2 ∙ 𝑇12) ∙ (1 + 𝜔𝑐2 ∙ 𝑇32) ∙ (1 + 𝜔𝑐2 ∙ 𝑇42)
 (40.7)  

 

𝐴1 = 𝐴1 ∙ 𝑇1 ∙ 𝑇3 ∙ 𝑇4 (40.8)  

 

𝐴2 = 𝐴0 ∙ (𝑇1 ∙ 𝑇3 + 𝑇1 ∙ 𝑇4 + 𝑇3 ∙ 𝑇4) (40.9)  

 

𝐴3 = 𝐴0 ∙ 𝑇1 ∙ 𝑇3 ∙ 𝑇4 (40.10)  

 



Equations for a Passive Fourth Order Loop Filter  

 

355 

 

Relation of Filter Impedance Coefficients to Component Values 

Relating the filter impedance coefficients and zero, T2, to the component values yields a system 

of five equations and seven unknowns.  The unknowns are the components C1, C2, C3, C4, R2, 

R3, and R4. 

 

𝑇2 = 𝑅2 ∙ 𝐶2 (40.11)  

 

𝐴3 = 𝑅2 ∙ 𝑅3 ∙ 𝑅4 ∙ 𝐶1 ∙ 𝐶2 ∙ 𝐶3 ∙ 𝐶4 (40.12)  

 

𝐴2 = 𝑅2 ∙ 𝑅3 ∙ 𝐶1 ∙ 𝐶2 ∙ (𝐶3 + 𝐶4) 

+𝑅4 ∙ 𝐶4 ∙ (𝐶2 ∙ 𝐶3 ∙ 𝑅3 + 𝐶1 ∙ 𝐶3 ∙ 𝑅3 + 𝐶1 ∙ 𝐶2 ∙ 𝑅2 + 𝐶2 ∙ 𝐶3 ∙ 𝑅2) 
(40.13)  

 

𝐴1 = 𝑅2 ∙ 𝐶2 ∙ (𝐶1 + 𝐶3 + 𝐶4) + 𝑅3 ∙ (𝐶1 + 𝐶2) ∙ (𝐶3 + 𝐶4) 

+𝑅4 ∙ 𝐶4 ∙ (𝐶1 + 𝐶2 + 𝐶3) 
(40.14)  

 

𝐴0 = 𝐶1 + 𝐶2 + 𝐶3 + 𝐶4 (40.15)  

 

Since there are seven unknowns and only five constraining equations, two parameters are free to 

be chosen.   There are several considerations in choosing these two parameters.  One consideration 

is that it would be nice if it was possible to solve the system of equations that results from this 

choice without resorting to numerical methods.  A second consideration is that once two 

components are chosen, they must be chosen in such a way that the remaining components turn 

out to be positive real values.  A final consideration is that it would be nice to be able to choose 

these components such that the capacitor C4 is maximized, or at least reasonably close to being 

maximized.   All these above three issues have been explored in depth, although the reader will be 

spared most of this.   It is possible to solve these equations exactly and find the one that maximizes 

the capacitor C4.   The problem with this is that often yields negative component values and it is 

also very complicated.   

The favored method is to choose C1 and R3 in a strategic way.  This method leads to equations 

that are possible to solve without resorting to numerical methods and that lead to positive real 

component values for all cases that have been tried.   This method is far less work and much more 

robust compared to the method that yields the maximum possible value for C4.  Furthermore, the 

resulting value for C4 turns out to be very close. 
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Choosing the Components C1 and R3 

This method involves choosing C1 and R3 from the third order loop filter design, and then using 

these values to find the other components for the fourth order filter.  For this solution, it is important 

to strictly order the poles such that T1>T3>T4.  The method starts with keeping filter coefficient 

A0 as it would be for the fourth order filter, but modifying the filter coefficients A1 and A2 to be 

as they would be for T4 be set to zero with the other time constants kept the same.  In the following 

equations, a1T3 and a2T3 are intentionally not capitalized because they are intermediate 

calculations, not the true filter coefficients. 

  

𝐴0 =   𝐶1 + 𝐶2 + 𝐶3 + 𝐶4 (40.16)  

 

𝐴1𝑇3 =   𝐴0 ∙ (𝑇1 + 𝑇3) (40.17)  

 

𝐴2𝑇3 =   𝐴0 ∙ 𝑇1 ∙ 𝑇3 (40.18)  

 

Based on these values, intermediate C1, C3, and R3 can be calculated with the formulae used for 

the third order passive filter.  These values are intentionally not capitalized and have subscripts to 

indicate that they are intermediate calculations, not final values. 

 

𝑐1𝑇3  =   
𝑎2𝑇3
𝑇22

∙ (1 + √1 +
𝑇2

𝑎2𝑇3
∙ (𝑇2 ∙ 𝐴0 − 𝑎1𝑇3)) (40.19)  

 

𝑐3𝑇3 = 
−𝑇22 ∙ 𝑐1𝑇3

2 + 𝑇2 ∙ 𝑎1𝑇3 ∙ 𝑐1𝑇3 − 𝑎2𝑇3 ∙ 𝐴0

𝑇22 ∙ 𝑐1𝑇3 − 𝑎2𝑇3
 (40.20)  

 

 

𝑟3𝑇3 = 
𝑎2𝑇3

𝑐1𝑇3 ∙ 𝑐3𝑇3 ∙ 𝑇2
 (40.21)  

 

It turns out that if one uses these values of c1T3 and r3T3 as the actual component values for C1 and 

R3, then C4 will be zero and R4 will be infinite, and the product of C4 and R4 will be the pole T4.    

Although these are not the correct values for C1 and R3, they are limits for choosing these values. 
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If C1 is chosen slightly less than c1T3, then real solutions will result.  But this begs the question of 

how much slightly less is.  If C1 is chosen too small, then it turns out that C4 becomes zero, R4 

becomes infinite, and their product becomes the pole T3.    

Using the above calculations as one limit, all that is necessary is to do the same calculations, except 

replacing the pole T3 with the pole T4.   

 

𝑎1𝑇4 =   𝐴0 ∙ (𝑇1 + 𝑇4) (40.22)  

 

𝑎2𝑇4 =   𝐴0 ∙ 𝑇1 ∙ 𝑇4 (40.23)  

 

 

𝑐1𝑇4  =   
𝑎2𝑇4
𝑇22

∙ (1 + √1 +
𝑇2

𝑎2𝑇4
∙ (𝑇2 ∙ 𝐴0 − 𝑎1𝑇4)) (40.24)  

 

𝑐3𝑇4 =  
−𝑇22 ∙ 𝑐1𝑇4

2 + 𝑇2 ∙ 𝑎1𝑇4 ∙ 𝑐1𝑇4 − 𝑎2𝑇4 ∙ 𝐴0

𝑇22 ∙ 𝑐1𝑇4 − 𝑎2𝑇4
 (40.25)  

 

 

𝑟3𝑇4 = 
𝑎2𝑇4

𝑐1𝑇4 ∙ 𝑐3𝑇4 ∙ 𝑇2
 (40.26)  

 

Now that the extreme limits are known, a good estimate is to guess somewhere in between.  

Although it turns out that using a weighted average can sometimes make capacitor C4 slightly 

larger than a simple average the impact of doing this is very small and design specific and not 

worth the effort.  Therefore, a simple average can be used.  

 

𝐶1 =  
 𝑐1𝑇3 + 𝑐1𝑇4

2
 (40.27)  

 

𝑅3 =  
𝑟3𝑇3 + 𝑟3𝑇4

2
 (40.28)  
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Determination of C2 

Now that C1 and R3 are known, the equations simplified can be rewritten in this form: 

 

𝐴3

𝑇2 ∙ 𝐶1 ∙ 𝑅3
 =   𝐶3 ∙ 𝐶4 ∙ 𝑅4 (40.29)  

 

𝐴2

𝐴3
−
1

𝑇2
−

1

𝐶1 ∙ 𝑅3
=   

1

𝐶4 ∙ 𝑅4
+

1

𝐶3 ∙ 𝑅4
+

1

𝐶1 ∙ 𝑅2
+

1

𝐶3 ∙ 𝑅3
 (40.30)  

 

 

𝐴1 − 𝑇2 ∙ 𝐴0 −
𝐴3

𝑇2 ∙ 𝐶1 ∙ 𝑅3
=  −𝑇2 ∙ 𝐶2 + 𝑅3 ∙ (𝐶1 + 𝐶2) ∙ (𝐶3 + 𝐶4) + 𝐶4 ∙ 𝑅4 ∙ (𝐶1 + 𝐶2) 

(40.31)  

 

 

𝐴0 − 𝐶1 = 𝐶2 + 𝐶3 + 𝐶4 (40.32)  

 

Rearranging these equations yields the following result. 

 

𝑘0 =   𝐶2 ∙ (
1

𝑇2 ∙ 𝐶1
−
𝑇2 ∙ 𝐶1 ∙ 𝑅3

𝐴3
) +

1

𝐶1 ∙ 𝑅3
 (40.33)  

𝑘1 = −𝑇2 ∙ 𝐶2 + 𝐶2 ∙ [𝑅3 ∙ (𝐴0 − 𝐶1)] +
1

𝐶3 ∙ 𝑅3
∙ (𝐶1 + 𝐶2) ∙ (

𝐴3

𝑇2 ∙ 𝐶1 ∙ 𝑅3
) (40.34)  

 

This is based on introducing the following intermediate constants. 

 

𝑘0 =   
𝐴2

𝐴3
−
1

𝑇2
−

1

𝐶1 ∙ 𝑅3
−
(𝐴0 − 𝐶1) ∙ 𝑇2 ∙ 𝑅3 ∙ 𝐶1

𝐴3
 (40.35)  

𝑘1 = 𝐴1 − 𝑇2 ∙ 𝐴0 +
𝐴3

𝑇2 ∙ 𝐶1 ∙ 𝑅3
− (𝐴0 − 𝐶1) ∙ 𝑅3 ∙ 𝐶1 (40.36)  
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By combining the previous equations to eliminate 
1

𝐶3∙𝑅3
, C2 can be found by solving the 

following quadratic equation that results: 

 

𝑎 ∙ 𝐶22 + 𝑏 ∙ 𝐶2 + 𝑐 = 0 (40.37)  

 

𝑎 =  
𝐴3

(𝑇2 ∙ 𝐶1)2
 (40.38)  

 

𝑏 = 𝑇2 + 𝑅3 ∙ (𝐶1 − 𝐴0) +  
𝐴3

𝑇2 ∙ 𝐶1
∙ (
1

𝑇2
− 𝑘0) (40.39)  

 

𝑐 =  𝑘1 − 
𝑘0 ∙ 𝐴3

𝑇2
 (40.40)  

Now that these constants have been defined, the value of C2 can finally be derived with the 

quadratic formula.  Note that the positive root is the only valid one that makes C2 positive. 

 

𝐶2 =  
−𝑏 + √𝑏2 − 4 ∙ 𝑎 ∙ 𝑐

2 ∙ 𝑎
 (40.41)  

 

Solution for Other Components 

Once C2 is known, the other components can easily be found. 

 

𝐶3 =  
𝑇2 ∙ 𝐴3 ∙ 𝐶1

𝑅3 ∙ [𝑘0 ∙ 𝑇2 ∙ 𝐴3 ∙ 𝐶1 − 𝐶2 ∙ (𝐴3 − 𝑅3 ∙ (𝑇2 ∙ 𝐶1)2)]
 (40.42)  

 

𝐶4 = 𝐴0 − 𝐶1 − 𝐶2 − 𝐶3 (40.43)  

 

𝑅2 =  
𝑇2

𝐶2
 (40.44)  

 

𝑅4 =  
𝐴3

𝑇2 ∙ 𝐶1 ∙ 𝐶3 ∙ 𝐶4 ∙ 𝑅3
 (40.45)  
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Conclusion 

This chapter has discussed the design of a fourth order passive filter.  A lot of the complexity 

comes from solving for the component values, once the filter coefficients are known.  Unlike 

the third order solution, there is no proof that the component values yielded are always 

positive, nor is there proof that the capacitor next to the VCO is the largest possible, in fact, it 

is not.  However, all cases tested provided positive real component values provided that the 

restriction is followed: 

 

𝑇31 + 𝑇43 ≤ 1 (40.46)  

 

In addition to this, the solution method presented in this chapter was compared against the 

solution that does yield the maximum value for the capacitor, C4, and the values were close.  

The reason that the other method was not presented is that it is much more complicated, and 

it has problems converging to real component values in all cases.  In the cases tested that it 

does converge to a solution with real component values, the value for the capacitor, C4, was 

only marginally larger. 
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Appendix A:  A Fourth Order Loop Filter Design 

 

Design Specifications 

 

Symbol Description Value Units 

BW Loop Bandwidth 10 kHz 

f Phase Margin 47.8 degrees 

 
Gamma Optimization 

Parameter 
1.115 none 

KPD Charge Pump Gain 4 mA 

KVCO VCO Gain 20 MHz/V 

fVCO Output Frequency 900 MHz 

fPD 
Phase detector 

frequency 
200 kHz 

T31 
Ratio of pole T3 to 

Pole T1 
0.4 none 

T43 
Ratio of pole T4 to 

Pole T1 
0.4 none 

 

Calculate Poles and Zero 

𝑁 = 
𝑓𝑉𝐶𝑂
𝑓𝑃𝐷

 (40.47)  

 

𝜔𝑐 = 2𝜋 ∙ 𝐵𝑊 (40.48)  

 

T1 is the only unknown.  Use the Exact Method to Solve for T1 Using Numerical Methods 

 

𝜙 = 𝑡𝑎𝑛−1 (
𝛾

𝜔𝑐 ∙ 𝑇1 ∙ (1 + 𝑇31 + 𝑇43 ∙ 𝑇31)
) − 𝑡𝑎𝑛−1(𝜔𝑐 ∙ 𝑇1)

− 𝑡𝑎𝑛−1(𝜔𝑐 ∙ 𝑇3) − 𝑡𝑎𝑛−1(𝜔𝑐 ∙ 𝑇4) 
(40.49)  

 

𝑇3 = 𝑇1 ∙ 𝑇31 (40.50)  

 

𝑇4 = 𝑇3 ∙ 𝑇43 (40.51)  

 

𝑇2 =
𝛾

𝜔𝑐2 ∙ (𝑇1 + 𝑇3 + 𝑇4)
 (40.52)  



   362         Equations for a Passive Fourth Order Loop Filter 

                              

𝐴0 =
𝐾𝑃𝐷 ∙ 𝐾𝑉𝐶𝑂
𝜔𝑐2 ∙ 𝑁

∙ √
1 + 𝜔𝑐2 ∙ 𝑇22

(1 + 𝜔𝑐2 ∙ 𝑇12) ∙ (1 + 𝜔𝑐2 ∙ 𝑇32) ∙ (1 + 𝜔𝑐2 ∙ 𝑇42)
 (40.53)  

 

Symbol Description Value Units 

N N Counter Value 4500 none 

c Loop Bandwidth 6.2832   x  104 rad/s 

T1 Loop Filter Pole 4.0685  x 10-6 s 

T2 Loop Filter Zero 4.4500 x 10-5 s 

T3 Loop Filter Pole 1.6274  x 10-6 s 

T4 Loop Filter Pole 6.5096  x 10-7 s 

A0 Total Capacitance 12.8773 nF 

 

Solve For Components C1 and R3 

First solve using the pole T3 

 

𝑎1𝑇3 =   𝐴0 ∙ (𝑇1 + 𝑇3) (40.54)  

 

 

𝑎2𝑇3 =   𝐴0 ∙ 𝑇1 ∙ 𝑇3 (40.55)  

 

 

𝑐1𝑇3  =   
𝑎2𝑇3
𝑇22

(1 + √1 +
𝑇2

𝑎2𝑇3
∙ (𝑇2 ∙ 𝐴0 − 𝑎1𝑇3)) (40.56)  

 

𝑐3𝑇3 = 
−𝑇22 ∙ 𝑐1𝑇3

2 + 𝑇2 ∙ 𝑎1𝑇3 ∙ 𝑐1𝑇3 − 𝑎2𝑇3 ∙ 𝐴0

𝑇22 ∙ 𝑐1𝑇3 − 𝑎2𝑇3
 (40.57)  

 

 

𝑟3𝑇3 = 
𝑎2𝑇3

𝑐1𝑇3 ∙ 𝑐3𝑇3 ∙ 𝑇2
 (40.58)  
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Symbol Description Value Units 

a1T3 
Intermediate First order loop filter 

coefficient 
7.3348  x 10-5  nF∙s 

a2T3 
Intermediate Second order loop filter 

coefficient 
8.5262  x 10-11 nF∙s2 

c1T3 Intermediate Loop Filter Capacitor 0.7397 nF 

c3T3 Intermediate Loop Filter Capacitor 0.1688 nF 

r3T3 Intermediate Loop Filter Resistor 15.3409 kW 

 

Now solve using the Pole T4 

 

𝑎1𝑇4 =   𝐴0 ∙ (𝑇1 + 𝑇4) (40.59)  

 

𝑎2𝑇4 =   𝐴0 ∙ 𝑇1 ∙ 𝑇4 (40.60)  

 

 

𝑐1𝑇4  =   
𝑎2𝑇4
𝑇22

(1 + √1 +
𝑇2

𝑎2𝑇4
∙ (𝑇2 ∙ 𝐴0 − 𝑎1𝑇4)) (40.61)  

 

𝑐3𝑇4 = 
−𝑇22 ∙ 𝑐1𝑇4

2 + 𝑇2 ∙ 𝑎1𝑇4 ∙ 𝑐1𝑇4 − 𝑎2𝑇4 ∙ 𝐴0

𝑇22 ∙ 𝑐1𝑇4 − 𝑎2𝑇4
 (40.62)  

 

 

𝑟3𝑇4 = 
𝑎2𝑇4

𝑐1𝑇4 ∙ 𝑐3𝑇4 ∙ 𝑇2
 (40.63)  

 

Symbol Description Value Units 

a1T4 
Intermediate First order loop filter 

coefficient 
6.0774  x 10-5  nF∙s 

a2T4 
Intermediate Second order loop filter 

coefficient 
3.4105  x 10-11 nF∙s2 

c1T4 Intermediate Loop Filter Capacitor 0.4628 nF 

c3T4 Intermediate Loop Filter Capacitor 0.4401 nF 

r3T4 Intermediate Loop Filter Resistor 3.7628 kW 
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Now find the Actual Values for C1 and R3 

𝐶1 =  
𝑐1𝑇3 + 𝑐1𝑇4

2
 (40.64)  

 

𝑅3 = 
𝑟3𝑇3 + 𝑟3𝑇4

2
 (40.65)  

Symbol Description Value Units 

C1 Loop Filter Capacitor 0.6013  nF 

R3 Loop Filter Resistor 9.5519 kW 

 

Solve for C2 

𝐴3 = 𝑅2 ∙ 𝑅3 ∙ 𝑅4 ∙ 𝐶1 ∙ 𝐶2 ∙ 𝐶3 ∙ 𝐶4 (40.66)  

 

𝐴2 = 𝑅2 ∙ 𝑅3 ∙ 𝐶1 ∙ 𝐶2 ∙ (𝐶3 + 𝐶4) 

+𝑅4 ∙ 𝐶4 ∙ (𝐶2 ∙ 𝐶3 ∙ 𝑅3 + 𝐶1 ∙ 𝐶3 ∙ 𝑅3 + 𝐶1 ∙ 𝐶2 ∙ 𝑅2 + 𝐶2 ∙ 𝐶3 ∙ 𝑅2) 
(40.67)  

 

𝐴1 = 𝑅2 ∙ 𝐶2 ∙ (𝐶1 + 𝐶3 + 𝐶4) + 𝑅3 ∙ (𝐶1 + 𝐶2) ∙ (𝐶3 + 𝐶4) 

+𝑅4 ∙ 𝐶4 ∙ (𝐶1 + 𝐶2 + 𝐶3) 
(40.68)  

 

𝑘0 =   
𝐴2

𝐴3
−
1

𝑇2
−

1

𝐶1 ∙ 𝑅3
−
(𝐴0 − 𝐶1) ∙ 𝑇2 ∙ 𝑅3 ∙ 𝐶1

𝐴3
 (40.69)  

𝑘1 = 𝐴1 − 𝑇2 ∙ 𝐴0 +
𝐴3

𝑇2 ∙ 𝐶1 ∙ 𝑅3
− (𝐴0 − 𝐶1) ∙ 𝑅3 ∙ 𝐶1 (40.70)  

𝑎 =  
𝐴3

(𝑇2 ∙ 𝐶1)2
 (40.71)  

𝑏 = 𝑇2 + 𝑅3 ∙ (𝐶1 − 𝐴0) +  
𝐴3

𝑇2 ∙ 𝐶1
∙ (
1

𝑇2
− 𝑘0) (40.72)  

𝑐 =  𝑘1 − 
𝑘0 ∙ 𝐴3

𝑇2
 (40.73)  

𝐶2 =  
−𝑏 + √𝑏2 − 4 ∙ 𝑎 ∙ 𝑐

2 ∙ 𝑎
 (40.74)  
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Symbol Description Value Units 

A1 First order loop filter coefficient 8.1731 x 10-5  nF∙s 

A2 Second Order loop filter coefficient  1.3301 x 10-10 nF∙s2 

A3 Third Order loop filter coefficient 5.5502 x 10-17 nF∙s3 

k0 Intermediate Calculation for finding C2      −5.4328 x 107 1/s 

k1 Intermediate Calculation for finding C2  −5.6202 x 10-4  nF∙s 

a Intermediate Calculation for finding C2  7.7528 x 10-8 s/nF 

b Intermediate Calculation for finding C2       3.9983 x 10-5 s 

c Intermediate Calculation for finding C2 −4.9426 x 10-4 nF∙s 

C2 Loop Filter Capacitor 12.0790 nF 

 

 

Solve for the Other Components 

Once C2 is known, the other components can easily be found. 

 

𝐶3 =  
𝑇2 ∙ 𝐴3 ∙ 𝐶1

𝑅3 ∙ [𝑘0 ∙ 𝑇2 ∙ 𝐴3 ∙ 𝐶1 − 𝐶2 ∙ (𝐴3 − 𝑅3 ∙ (𝑇2 ∙ 𝐶1)2)]
 (40.75)  

 

 

𝐶4 = 𝐴0 − 𝐶1 − 𝐶2 − 𝐶3 (40.76)  

 

 

𝑅2 =  
𝑇2

𝐶2
 (40.77)  

 

𝑅4 =  
𝐴3

𝑇2 ∙ 𝐶1 ∙ 𝐶3 ∙ 𝐶4 ∙ 𝑅3
 (40.78)  

 

 

Symbol Description Value Units 

C3 Loop Filter Capacitor 0.1245 nF 

C4 Loop Filter Capacitor 0.0726 nF 

R2 Loop Filter Resistor 3.6840 kW 

R4 Loop Filter Resistor 24.0453 kW 
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Chapter 41      Fundamentals of PLL Active Loop Filter Design 

 

Introduction 

For reasons of cost and noise, the passive filter is often the preferred approach as it can be done 

with resistors and capacitors and no active devices.  

KPD  

R3

R2

C2

 

C1 C3

 

Figure 41.1  Passive Filter 

 

That being said, there are some situations where it does make sense to add an op-amp to create an 

active filter.  The most common reason for this is that the charge pump cannot supply the full 

voltage range required by the VCO.  Other less common reasons to use an active filter might to be 

to isolate the VCO input capacitance, monitor the tuning voltage, or isolate the loop filter from 

excessive VCO leakage.   

 

− 

+

R3

 

C3

KPD

R2 C2

Vbias

C1

R1

 

Figure 41.2  Active and Passive Loop Filter Example 
 

The selection of the op-amp is typically made based on certain desirable characteristics that impact 

the performance.  Once these characteristics are understood and the op amp is chosen, the next step 

is to design the loop filter.  After this, the design can be simulated and compared to the actual 

measurement.  As there is some art to the op amp performance, it is highly encouraged to compare 

these simulations to actual performance as there are many characteristics of op-amps that are hard 

to model in the loop filter.   This chapter goes through the op amp characteristics and selection 

criteria, then discusses filter design, and finally does some simulations and comparisons to actual 

measurements.   
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Op-Amp Characteristics and Selection 

Real world op amps have several characteristics that can impact performance and influence the 

selection of the op amp.   Among these characteristics are voltage rails, minimum stable gain, noise 

performance, bandwidth, bias currents, and slew rate.   This section discusses each of these 

characteristics and how they impact the op amp selection. 

 

Voltage Rails 

Op amps have both input and output rails that restrict how close the input and output can be to the 

power supply.  If the input of the op amp cannot accept the voltage that the charge pump is biased 

to, Vbias, then it cannot be used unless this Vbias voltage is shifted, which might lead to a 

compromise in performance.  Typically, the headroom from the negative input supply rail is more 

likely to be an issue than the one from the positive one and the PLL charge pump supply is typically 

less than the op amp voltage supply.   In terms of the output supply headroom, this just needs to be 

able to supply whatever voltage range is required for the VCO to operate.   These statements can 

be summarized in the table below. 

 

 Symbol Description Restrictions 

P
L

L
 

CPoutMin Minimum possible charge pump voltage, typically 0.5 V. 

It is assumed that the PLL 

is chosen and these are 

fixed. 

CPoutMax 

Maximum charge pump output voltage, which is typically 

0.5 V less than charge pump supply, but consult the 

datasheet. 

Vbias 
Charge pump voltage that gives optimal performance and is 

typically ½ of the charge pump supply voltage. 

A
M

P
 

AMPinMin 
Minimum possible input voltage, assuming that the 

negative supply is grounded. 
AMPinMin  ≤  Vbias 

AMPinMax 
Maximum allowable input voltage, which is the op amp 

supply minus the positive input rail. 
AMPinMax  ≥ Vbias 

AMPoutMin 

Minimum possible output voltage of the op amp, which is 

equal to the negative output rail, assuming that the negative 

supply is grounded. 

AMPoutMin ≤ 

VCOinMin 

AMPoutMax 
Maximum possible output voltage of the op amp and is 

equal to the op amp supply minus the positive output rail. 

AMPoutMax  ≥ 

VCOinMax 

V
C

O
 

VCOinMin 

Minimum required tuning voltage of the VCO, which is the 

voltage corresponding to the lowest frequency needed from 

the VCO, accounting for margin.  This assumes a positive 

VCO tuning characteristic. It is assumed that the 

VCO is chosen and these 

are fixed 

VCOinMax 

Maximum required tuning voltage of the VCO, which is the 

voltage corresponding to the highest frequency needed 

from the VCO, accounting for margin.  This assumes a 

positive VCO tuning characteristic. 

Table 41.1 Op Amp Supply Headroom Requirements 
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Minimum Stable Gain 

An op-amp is said to be unity gain stable if it can operate with a gain of one.  If it is not, then the 

minimum stable gain is the lowest gain where it can operate.  As a general rule of thumb, having 

gain in an active filter is undesirable as it multiplies the voltage noise of the op amp.   If gain is 

required for the op-amp, then it would ideally have very low voltage noise to compensate for this.  

 

Noise Current and Noise Voltage 

The noise of the op amp can be modeled as a noise source and a current source at the input.  This 

noise goes to the input of the VCO and creates phase noise.  Typically, the impact of voltage noise 

is most seen at the loop bandwidth because it gets attenuated significantly at lower offsets by the 

VCO transfer function and decreases as 20 dB/decade with offset.  Current noise typically has 

much less impact and can often be disregarded, but the impact is mainly at lower offsets, if at all. 

In order to determine if the op-amp noise is appropriate, full simulations are best, but a simplified 

analysis can be done based on normalizing the noise sources and introducing some simplifying 

assumptions.   The simplified approach is to focus on the impact of the noise voltage near the loop 

bandwidth of the PLL and account for any multiplication.  The loop filter will be designed to 

minimize the multiplication, so this factor will the minimum stable gain of the op amp, or one if 

the op amp is unity gain stable.  The op amp voltage noise will create FM modulation on the VCO 

tuning line at the loop bandwidth frequency, and this at the loop bandwidth frequency gets 

multiplied by the VCO gain and generates the following noise power.  

 

𝑃𝑁𝐴𝑀𝑃 ≈ 20 ∙ 𝑙𝑜𝑔 (
𝐴𝑚𝑝𝐺𝑎𝑖𝑛 ∙ 𝑉𝑛 ∙ 𝐾𝑉𝐶𝑂

√2 ∙ 𝐵𝑊
) (41.1)  

 

In this equation, AmpGain is equal to one, except for the active C filter, where it can be greater.  

For example, consider an op amp with 1 nV/√Hz noise and 100 kHz bandwidth.  Also suppose that 

VCO gain was 200 MHz/V and AmpGain was unity.  In this case, the phase noise due to just the 

op amp would be −117 dBc/Hz.  This formula can also be worked backwards by assuming a 

tolerable phase noise for PNAMP and working this backward to see what op amp noise voltage this 

implies.  In either case, the following figure summarizes the result. 
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Figure 41.3  Phase Noise Generated at Loop Bandwidth by Op Amp 

 

Bias Current Considerations 

The inputs to the op amp might claim to be high impedance, but the bias currents may be important 

to consider if they are not less than the charge pump leakage of the PLL, which typically in the nA 

range.   PLLs with higher phase detector frequencies tend to be much more tolerant of these leakage 

current, unless it gets in the mA range.   Assuming a PLL with BasePulseSpur=−340 dBc, 1 nA 

charge pump leakage, and 1 mA charge pump gain, the following table gives some rough 

guidelines for tolerable bias currents.   

 

Phase Detector Frequency Tolerable Bias Currents 

≤ 100 kHz 0.5 nA 

1 MHz 1.6 nA 

10 MHz 160 nA 

100 MHz 16 mA 

Table 41.2 Tolerable Op Amp Bias Currents 

 

As another rule of thumb, if the bias currents were to exceed more than about 10% of the charge 

pump current, then it might also cause stability issues, but this should almost never happen. 
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Speed Considerations 

For speed considerations, one might consider the slew rate and bandwidth.  This section shows 

some simple requirements that are easier to understand and then goes through some other effects 

that might be more difficult to explain, such as the ones related to the speed of the op amp. 

Slew rate tends not to be that big of a deal in most situations unless the PLL lock time is extremely 

fast.  As a rule of thumb, the first 20% of the lock time is getting close to the correct frequency and 

the last 80% is settling this to a finer tolerance.   For instance, if 900 MHz corresponds to 1 V and 

2000 MHz corresponds to 21 V and the expected lock time is 5 μs, then the slew rate would need 

to be faster than 20 V/us.  If it was slower, then it would impact the time the PLL would take to 

lock, although it would still lock. 

Another consideration is the gain bandwidth product.  This is relatively constant and is the product 

of the offset frequency and the op amp gain.  When the gain drops below 10 dB, then the 

assumption that the op amp holds both inputs to the same voltage starts to come apart.  At offsets 

sufficiently higher than the PLL loop bandwidth, this distortion will be attenuated and as general 

of rule to prevent this distortion is. 

 

𝐺𝑎𝑖𝑛𝐵𝑎𝑛𝑑𝑤𝑖𝑑𝑡ℎ𝑃𝑟𝑜𝑑𝑢𝑐𝑡 > 10 × 𝑃𝐿𝐿 𝐿𝑜𝑜𝑝 𝐵𝑎𝑛𝑑𝑤𝑖𝑑𝑡ℎ (41.2)  

    

If this rule is violated, then one way that this can show up is peaking near the offset frequency 

that corresponds to zero dB gain.  A simplified way to think of this is the op-amp introduces a 

phase shift, which will cause a peak in the phase noise near the point of unity gain.   To illustrate 

this, the following figure compares various loop filters of the same bandwidth.  The active filter 

was done with the LM6211 op amp that has a gain bandwidth product of 17 MHz, which would 

mean at this frequency, the op-amp gain would be about 0 dB.  Indeed, near this frequency, we see 

a large peak in the noise in Figure 41.4 .   
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Figure 41.4  Phase Noise Simulation and Actual Measurement 

 

Note that in the region of 100 Hz to 10 kHz, we see the phase noise of the active filter, specifically 

the PLL 1/f noise, degraded about 3 dB relative to the passive filter and the simulation.  The most 

likely reason for this is that the op amp was not fast enough to respond to the fast current pulses 

from the charge pump.   The charge pump output is normally off and only comes on every phase 

detector cycle to put out fast correction pulses of length TON.  Modern PLLs can have a time of 

TON of 460 ps, which is much faster than most op amps.  If the op amp is not fast enough, it 

lengthens the on time of the charge pump.  Recall from the PLL phase noise chapter that the PLL 

1/f noise relates directly to the on time of the charge pump and this is why there is an increase in 

the PLL 1/f noise.  The PLL flat noise relates to the standard deviation of the on time of the charge 

pump.  This may be also impacted, but this noise is masked out by the op amp noise in Figure 41.4 

. 

 

Charge

Pump High Z

+KPD

TON

-KPD

 

Figure 41.5  Typical Charge Pump Output 
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Other experiments were used to validate this theory.  To do this, the minimum charge pump on 

time TON was adjusted using the Texas Instruments LMX2492 PLL.  Increasing this on time 

theoretically degrades phase noise very slightly, but it actually improved it with the op amp to an 

extent as shown in the Figure 41.6 . 

 

 

Figure 41.6  Impact of Charge Pump on Time (PFD_DLY) on PLL Noise 

 

Another experiment that was done was to put the entire loop filter before the op amp and again this 

noise improved, so indeed this close in noise is most likely related to the op amp not responding 

fast enough to the fast charge pump output pulses.   

It is strongly emphasized that these examples are not to showcase the performance of the LM6211 

op amp or to present an optimized design, but rather agitate the issues to make them easily visible 

and easier to study; there are techniques that can be utilized to mitigate these effects.  

Although typically not much of an issue, one can also consider the impact of the op amp speed on 

the lock time and transient response of the PLL.  The first thing to think about slew rate of the op 

amp needs to be fast enough to accommodate the rise time of the PLL, which is almost always the 

case.  A little more obscure, but interesting consideration is that the op amp can also suppress cycle 

slipping.  In the following figure, the same loop filter was used for a second order passive vs. a 

second order active filter. 
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Figure 41.7  Active and Passive Filter Transient Response Comparison 

 

Active Filter Types 

Active A Filter 

The Active A filter is generally recommended for its many advantages.  The pole before the op-

amp helps reduce some of the speed requirements for the op amp for frequencies above the pole, 

T1.   It also allows the op amp to be biased at the optimal tuning voltage.  The noise of the op-amp 

is gained by 1 + R2/R1, but this is typically only a little greater than one as R1 can be chosen large 

to minimize this gain.  However, if R1 is chosen too large, then the resistor noise becomes a 

consideration, so there is a trade-off involved that will be discussed later.  For this configuration, 

it is recommended to use a unity gain stable op-amp. 
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Figure 41.8  Active A Filter 
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One variation of the Active A filter is to not include the pole before the op-amp and put it after the 

op amp as shown.   This is the equivalent as the limiting case at the T3/T1 ratio approaches infinity. 
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Figure 41.9  Active A Filter with T3/T1 = ∞ 

 

This configuration puts the most stringent requirements on the op-amp, but has the advantage that 

the lowest frequency pole can be placed after the op amp.  It makes sense in the case where the op 

amp can handle the fast pulse action of the charge pump, or the pole after the op amp is able to 

attenuate any undesired issues due to the op amp.  With this variation of the Active A filter, the 

fourth order case is not covered.  For this case, consider the Active B filter. 

 

Active B Filter 

The Active B filter puts stringent requirements on the op amp and requires it to be unity gain stable.  

The only advantage of this filter type over the active A would be that the noise is not multiplied up 

at all and there is no concern about the R1 resistor noise. 
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Figure 41.10  Active B Filter 
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The Active B filter is generally not recommended as it wastes the lowest frequency pole, T1, in the 

feedback path of the op amp.  It makes more sense to use an Active A filter and either put the pole 

before the op amp if it helps to deal with the fast pulsing action of the charge pump, or after the op 

amp to help attenuate its noise. 

 

Active C Filter 

The active C filter is often chosen because it is the most intuitive approach.  For instance, if the 

charge pump can output up to 5 V and 15 V is required, then the gain is chosen to be equal to three.   

The general equation for the gain is: 

 

𝐴𝑚𝑝𝐺𝑎𝑖𝑛 = 1 + 𝑅𝑎/𝑅𝑏 (41.3)  

 

It has the advantage of lower speed requirements for the op amp, which could be beneficial to the 

close in 1/f noise.  Also, the op amp does not need to be unity gain stable for this configuration.   
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Figure 41.11  Active C Filter 

 

 

Setting Up the Bias Voltage 

Both the Active A and Active B need to establish a bias voltage, Vbias.   For optimal performance, 

the best phase noise and spurs are typically at half of the charge pump supply voltage.   The most 

common way of establishing this voltage is to use a simple voltage divider off the charge pump 

supply voltage.  It is a good idea to place a capacitor, Cb, because it rolls off the resistor noise and 

also provides significant filtering of any supply noise.   
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Rb

Ra

Cb

Vbias

+Vp
(charge pump supply)

 

Figure 41.12  Bias Voltage Setup for Op-Amp 

 

In terms of calculating the resistor noise, recall the formula: 

 

𝑅𝑒𝑠𝑖𝑠𝑡𝑜𝑟𝑁𝑜𝑖𝑠𝑒 =  √4 ∙ 𝐾𝐵 ∙ 𝑇 ∙ 𝑅 (41.4)  

 

KB is Boltzmann’s constant, which is 1.38066 x 10-23 
 J/K, T is the temperature in Kelvin, which is 

298o at room temperature, and R is the Thevenin equivalent of the resistors Ra and Rb.  For the 

example in Figure 41.12  with Ra = Rb = 10 kW, the calculated resistor noise is 9.1 nV/√Hz. The 

noise for other resistance values under the assumption that Cb = 1 mF is shown below.  

 

 

Figure 41.13  Bias Resistor Noise 
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In summary, the bias voltage noise can be made a non-issue with just a 1 mF capacitor.  With a 

larger capacitor, it can be rolled off more, although this is probably not necessary; the noise of the 

bias network is essentially a non-contributor next to the op amp voltage noise.  Realize that at low 

offsets below 1 kHz, this noise is shaped by the VCO transfer function, which will greatly attenuate 

this noise.  Furthermore, the input reference and PLL 1/f noise will contribute here, so it is less 

likely at lower offsets that this will be a big deal.   Based on this graph, 100 kW might seem a more 

sensible bias resistor value, although making this resistance too high makes this bias network 

susceptible to the bias currents of the op amp. 

 

The Pole Switching Trick 

Making the T3/T1 Ratio Greater than 100% 

For passive filters the T3/T1 ratio needs to be strictly less than 100%.   However, for active filters, 

this is not a requirement.  In fact, it is typically beneficial to put the larger (lower frequency) pole 

after the op-amp as this can attenuate the op-amp noise and other undesirable effects of the op amp.  

The following figure shows the impact of putting the larger pole before and afte the op amp for a 

third order filter. 

 

 

Figure 41.14  Impact of Switching Poles and Charge Pump on Time 
 

 

The big bump in phase noise at 10 MHz in Figure 41.14  is due to insufficient bandwidth of the 

op-amp and potentially other issues.  In any case, regardless of the issues, a larger pole after it can 

help this effect.  If we consider this pole switching effect to an extreme and take T3/T1 → ∞, then 

the maximum attenuation after the op amp can be placed, but it does put more stringent 

requirements on the op-amp.  
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Designing the Loop Filter 

Defining the Loop Equations 

Regardless of what filter topology is used, the loop filter impedance is defined as the output voltage 

to the VCO generated by a current produced from the charge pump.  The expression is very similar 

to the passive expression, except there is a term, A, to represent the gain in the case it is different 

than one for the case of a type C active filter. 

 

𝑍(𝑠) =  
𝐴𝑚𝑝𝐺𝑎𝑖𝑛

𝑠 ∙ 𝐴0
∙

1 + 𝑠 ∙ 𝑇2

(1 + 𝑠 ∙ 𝑇1) ∙ (1 + 𝑠 ∙ 𝑇3) ∙ (1 + 𝑠 ∙ 𝑇4)
 (41.5)  

 

Assuming that the charge pump polarity is inverted, the open loop gain becomes: 

 

𝑍(𝑠)
𝑁⁄ =  − 

𝐴𝑚𝑝𝐺𝑎𝑖𝑛 ∙ 𝐾𝑃𝐷 ∙ 𝐾𝑉𝐶𝑂
𝑠 ∙ 𝑁

 ∙
1 + 𝑠 ∙ 𝑇2

𝑠 ∙ 𝐴0 ∙ (1 + 𝑠 ∙ 𝑇1) ∙ (1 + 𝑠 ∙ 𝑇3) ∙ (1 + 𝑠 ∙ 𝑇4)
 (41.6)  

 

 Active A Active B Active C 

T1 𝐶1 ∙ 𝑅1 
𝐶1 ∙ 𝐶2 ∙ 𝑅2

𝐶1 + 𝐶2
 

T2 𝐶2 ∙ 𝑅2 

T3 
(𝐶3 ∙ 𝑅3 + 𝐶4 ∙ 𝑅3 + 𝐶4 ∙ 𝑅4) + √(𝐶3 ∙ 𝑅3 + 𝐶4 ∙ 𝑅3 + 𝐶4 ∙ 𝑅4)2 − 4 ∙ 𝐶3 ∙ 𝐶4 ∙ 𝑅3 ∙ 𝑅4

2
 

T4 
(𝐶3 ∙ 𝑅3 + 𝐶4 ∙ 𝑅3 + 𝐶4 ∙ 𝑅4) − √(𝐶3 ∙ 𝑅3 + 𝐶4 ∙ 𝑅3 + 𝐶4 ∙ 𝑅4)2 − 4 ∙ 𝐶3 ∙ 𝐶4 ∙ 𝑅3 ∙ 𝑅4

2
 

A0 C1 C1+C2 

AmpGain −1 −1 1 + 𝑅𝑎/𝑅𝑏 

Table 41.3 Filter Parameters as they relate to the Filter Components 

 

The time constants can be found in the same manner that they are found for the passive filter, 

except that the AmpGain needs to be accounted for.  In all cases but the Active C filter, this can be 

ignored as the charge pump polarity can be inverted to make this effectively one.  For the Active 

C filter, simply multiply the VCO gain by AmpGain and proceed as normal. 

 

Finding the Time Constants for an Active A Filter with T31 → ∞  

Finding of the time constants for active filters is an identical process to that for passive filters with 

the one case exception of the Active A filter where one takes T31→∞.   In this case, use the design 

with the substitutions T31 = 0 and T43 → T31.     
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Ordering the Poles 

When the poles are solved for, it is arbitrary for the ordering of T1, T3, and T4.   However, as a 

general practice, it is best to put the maximum attenuation after the op amp.  So in this case, one 

would typically want T1 to be the smallest (highest frequency) pole, T3 to be the largest pole, and 

T4 to be the second largest pole.   

 

Solving for the Components 

Once that A0 is found, the other components can be found using Table 23.4.  For a third order loop 

filter, C3 should be at least four times the VCO input capacitance and at least C1/5.  For a fourth 

order loop filter, C4 should be at least this stated limit above. 

 

 Active A Active B Active C 

R1 

Free to choose, but want R1>>R2 for 

optimal noise while still keeping C1 large 

enough.    Recommended choice: 

𝑅1 =  10 ∙ 𝑅2 

n/a n/a 

C1 𝐶1 =  
 𝑇1

𝑅1
 𝐴0 ∙

𝑇1

𝑇2
 𝐴0 ∙

𝑇1

𝑇2
 

C2 𝐴0 𝐴0 ∙ (1 −
𝑇1

𝑇2
) 𝐴0 ∙ (1 −

𝑇1

𝑇2
) 

R2 
𝑇2

𝐶2
 

Third Order Filter Components 

C3 
Free to choose.  Recommend to choose at least 4x the VCO input capacitance 

and at least 220 pF.  Consider smaller if R3 gets less than about 40 W. 

R3 
𝑇3

𝐶3
 

Fourth Order Filter Components 

C4 
Free to choose.  Recommend to choose at least 4x the VCO input capacitance 

and at least 220 pF.  Consider decreasing it if R3 gets less than about 40 W. 

C3 𝐶4 ∙
4 ∙ 𝑇3 ∙ 𝑇4

(𝑇3 − 𝑇4)2
 

R3 𝐶4 ∙
𝑇3 + 𝑇4

2 ∙ (𝐶3 + 𝐶4)
 

R4 𝐶4 ∙
𝑇3 + 𝑇4

2 ∙ 𝐶4
 

Table 41.4 Loop Filter Component Values Computed from Time Constants    
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Using Transistors for the Standard and Alternative Feedback Approaches 

For those who are averse to using op-amps, transistors can be used to replace the op-amp in order 

to reduce the cost and the noise.  However, be warned that this is a little of a science experiment 

as the gain of the loop depends on the tuning voltage.  For the approach presented here, the 

transistors can only sink current, so a pull-up resistor, Rpp, is required.  The choice of Rpp is design 

and possibly transistor specific, but Rpp = 10 kW is a good starting value.  Rpp sets the gain of the 

circuit.  Choosing this resistor too large will cause the circuit to be unstable and the carrier to dance 

around the frequency spectrum.  Choosing it too small will cause excessive current consumption 

since Vpp is grounded through the resistor Rpp when the transistors turn on.   This particular design 

has been built and tested to 30 volt operation.  The optional 20 kW resistor may reduce the phase 

noise.  In some cases, this resistor can also be replaced by a capacitor.  The 220 W resistor sets the 

bias point for the charge pump output pin.  The 1 kW resistor limits the sink current. 

 

C3KPD

C2

R2C1

1 kW

220 W20 kW 

(optional)

Rpp

R3

+Vpp

+Vp

VCO 

Tuning 

Voltage

 

Figure 41.15  Third Order Active B Filter Using Transistors 
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Conclusion 

The equations for active loop filter design have been presented.  Active filters are necessary when 

the charge pump cannot operate at high enough voltages to tune the VCO and can also help reduce 

the ill effects of the VCO input capacitance.  There are many aspects of designing with an op-amp 

and it adds another degree of freedom and complexity.  As a general rule of thumb, it might first 

debug the design using a second order passive filter before bringing in the extra variable of the op 

amp.   

In terms of filter design, there are three types of active filters:  Active A, Active B, and Active C.  

In general, Active A is a good starting point, but maybe Active C makes sense if the op-amp has 

issues with close in noise due to the charge pump pulsing action.  Whatever approach is chosen, it 

is generally a good practice to put the lowest frequency pole after the op-amp to attenuate as much 

of the noise from it as possible.   

The choice of the op-amp is somewhat of an art.  One has to balance the input and output rails, 

bias currents, noise voltage, and noise current.  The input rail, especially the negative one, needs 

to be less than the maximum charge pump output voltage in order to avoid the need for a negative 

supply.  If the output rail is too high, the VCO might not be able to tune the entire range.  Bias 

currents contribute to leakage-induced spurs.  If a fractional PLL is used, it might be possible to 

make the phase detector frequency high enough to tolerate these higher bias currents.  If an integer 

PLL is used, then one needs to choose an op-amp with lower bias currents.  Low noise voltage and 

noise current are very important because they contribute to the overall phase noise.  Below are 

some recommendations for op-amps that can be used. 

 

Device 

Supply 

Voltage (V) 

Input Rails 

(V) 

Output Rails 

(V) Noise 

Voltage  

(nV/√Hz)  

Minimum 

Stable Gain 

 (V/V) 

Bias 

Currents  

(nA) 

GBW 

(MHz) 
Min Max 

Min 

from 

V− 

Max 

From 

V+ 

Min 

from 

V− 

Max 

from V+ 

LME49990 10 36 3 −3 2 −2 0.9 1 500 110 

OPA211  4.5 36 1.8 −1.4 0.2 −0.2 1.1 1 175 45 

LM6211 5 24 0 −1.7 0.1 −0.1 5.5 1 0.005 17 

Table 41.5 Op Amp Recommendations 
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Appendix A:   Guidelines for Choosing Component R1 for an Active A Filter 

The general strategy for this analysis is to determine what choice of R1 minimizes the noise 

contribution of the resistor R1 itself and the op-amp voltage noise without making C1 too small.  

The expression for the R1 resistor noise has already been derived. 

 

𝑉𝑟 = √[(𝑉𝑅1)2 ∙ ‖
𝐶1

𝐶2 
∙
1 + 𝑠 ∙ 𝑅2 ∙ 𝐶2

1 + 𝑠 ∙ 𝑅1 ∙ 𝐶1
‖]

2

   (41.7)  

 

Note that the voltage noise for R1. 

 

√4 ∙ 𝐾𝐵 ∙ 𝑇 ∙ 𝑅1 (41.8)  

 

Using this expression for R1 and the definition of the time constants, the noise due to resistor R1 

can be simplified with these.  Note that this function is a decreasing function of R1, which implies 

that one should choose R1 as large as possible to minimize the resistor noise at the output of the 

op-amp. 

 

𝑉𝑟 =
4 ∙ 𝐾𝐵 ∙ 𝑇

𝑅1
∙ ‖
𝑇1

𝐴0 
∙
1 + 𝑠 ∙ 𝑇2

1 + 𝑠 ∙ 𝑇1
‖   (41.9)  

 

Switching to the op-amp voltage noise, recall that it has the following expression. 

 

𝑉𝑎𝑚𝑝 = √[𝑉𝑛 ∙ ‖1 +  
𝐶1

𝐶2 
∙
1 + 𝑠 ∙ 𝑅2 ∙ 𝐶2

1 + 𝑠 ∙ 𝑅1 ∙ 𝐶1
‖]

2

 (41.10)  

 

Substituting in the component values and poles allows this to be rewritten. 

 

𝑉𝑎𝑚𝑝 = 𝑉𝑛 ∙ ‖1 +  
𝑇1

𝐴0 ∙ 𝑅1 
∙
1 + 𝑠 ∙ 𝑇2

1 + 𝑠 ∙ 𝑇1
‖ (41.11)  
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Again, we have a function that is decreasing in R1.   The conclusion is that choosing R1 larger 

improves both the noise due to the op-amp and also for the resistor itself.   For a generic rule of 

thumb, we see that there are diminishing returns if the following condition is met. 

 

‖
𝑇1

𝐴0 ∙ 𝑅1 
∙
1 + 𝑠 ∙ 𝑇2

1 + 𝑠 ∙ 𝑇1
  ‖ ≪ 1 (41.12)  

 

Using the definitions of poles and component values, this constraint can be translated for low 

frequencies into: 

 

𝑇1

𝐴0 ∙ 𝑅1
≪ 1   ⇒   

𝑇1 ∙ 𝑅2

𝑇2 ∙ 𝑅1
≪ 1   ⇒   𝑅2 ≪

𝑇2

𝑇1
∙ 𝑅1 (41.13)  

 

At high frequencies, this constraint can be translated into 

𝑇2

𝐴0 ∙ 𝑅1
≪ 1   ⇒  𝑅2 ≪ 𝑅1 (41.14)  

 

As T2 is always bigger than T1, this constraint will also satisfy the lower frequency constraint.  To 

make this a non-issue, make this a factor of 10.  If this leads to unrealistic values for other 

components, then revisit 

 

𝑅1 =  10 ∙ 𝑅2 (41.15)  
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Appendix B:  An Active Filter Design Example 

 

Symbol  Description Value Units 

BW Loop Bandwidth 20 kHz 

f Phase Margin 47.8 degrees 

 
Gamma Optimization 

Parameter 
1 none 

KPD Charge Pump Gain 3.1 mA 

KVCO VCO Gain 44 MHz/V 

fVCO Output Frequency 2442 MHz 

fPD Phase detector frequency 2000 kHz 

T31 Ratio of pole T3 to Pole T1 1000% none 

T43 Ratio of pole T4 to Pole T1 50% none 

AmpGain Gain of op-amp 
1 for Active A,B 

3 for Active C 
none 

 

Calculate Poles and Zero and A0 

 

𝑁 =
𝑓𝑉𝐶𝑂
𝑓𝑃𝐷

   (41.16)  

  

𝜔𝑐 = 2𝜋 ∙ 𝐵𝑊   (41.17)  

 

T1 is the only unknown.  Solve for T1 Using Numerical Methods 

 

𝜙 = 𝑡𝑎𝑛−1  (
𝛾

𝜔𝑐 ∙ 𝑇1 ∙ (1 + 𝑇31 + 𝑇43 ∙ 𝑇31)
) − 𝑡𝑎𝑛−1 (𝜔𝑐 ∙ 𝑇1)

− 𝑡𝑎𝑛−1 (𝜔𝑐 ∙ 𝑇11 ∙ 𝑇31) − 𝑡𝑎𝑛−1 (𝜔𝑐 ∙ 𝑇1 ∙ 𝑇31 ∙ 𝑇43)   
(41.18)  

  

𝑇3 = 𝑇1 ∙ 𝑇31   (41.19)  

 

𝑇4 = 𝑇3 ∙ 𝑇43   (41.20)  

 

𝑇2 =
𝛾

𝜔𝑐2 ∙ (𝑇1 + 𝑇3 + 𝑇4)
   (41.21)  
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𝐴0 = 
𝐾𝑃𝐷 ∙ 𝐾𝑉𝐶𝑂 ∙ 𝐴𝑚𝑝𝐺𝑎𝑖𝑛

𝜔𝑐2 ∙ 𝑁
∙ √

1 + 𝜔𝑐2 ∙ 𝑇22

(1 + 𝜔𝑐2 ∙ 𝑇12) ∙ (1 + 𝜔𝑐2 ∙ 𝑇32) ∙ (1 + 𝜔𝑐2 ∙ 𝑇42)
 (41.22)  

 

 

Symbol Description Value Units 

N N Counter Value 1221 none 

c Loop Bandwidth 1.2566 x  105 rad/s 

T1 Loop Filter Pole 1.8853 x 10-7 s 

T2 Loop Filter Zero 2.0994 x 10-5 s 

T3 Loop Filter Pole 1.8853 x 10-6 s 

T4 Loop Filter Pole 9.4263 x 10-7 s 

A0 
Loop Filter Coefficient for Active A and B 31.0982 nF 

Loop Filter Coefficient for Active C 93.2945 nF 

 

 

C3, C4, R3, and R4 for All Active Filters 

 

𝐶4 = 560 𝑝𝐹 (41.23)  

  

𝐶3 =  𝐶4 ∙
4 ∙ 𝑇3 ∙ 𝑇4

(𝑇3 − 𝑇4)2
 (41.24)  

 

Symbol Value Units 

C4 560 pF 

C3 4480 pF 

R3 280.5 W 

R4 2524.9 W 

 

 

560 pF was chosen for C4 as it is likely to be much larger than the VCO input capacitance.  We 

see that the load presented to the op amp output is greater than 50 W, as R3 is larger than this alone, 

so therefore this choice of C4 was good.  Had it been too small, then we would need to choose a 

smaller value for C4.  However, the choice seems to have been a good one. 
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Active A Filter 

 

𝐶2 = 𝐴0 (41.25)  

 

𝑅2 = 
 𝑇2

𝐶2
 (41.26)  

 

𝑅1 =  10 ∙ 𝑅2 (41.27)  

 

𝐶1 =  
 𝑇1

𝑅1
 (41.28)  

 

Symbol Value Units 

C2 31.0982 nF 

R2 0.6751 kW 

R1 6.7508 kW 

C1 0.0279 kW 

 

Active B and C Filters 

𝐶1 =  𝐴0 ∙
𝑇1

𝑇2
 (41.29)  

 

𝐶2 = 𝐴0 ∙ (1 −
𝑇1

𝑇2
) (41.30)  

 

𝑅2 = 
 𝑇2

𝐶2
 (41.31)  

 

Symbol 
Value 

Units 
Active B Active C 

A0 31.0982 93.2945 nF 

C1 0.2793 0.8378 nF 

C2 30.8189 92.4568 nF 

R2 681.2 227.1 W 
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Chapter 42      Active Filter from Differential Phase Detector Outputs 

 

Introduction 

This chapter investigates the design and performance of a loop filter designed using the differential 

phase detector outputs, fR and fN.  In general, modern PLLs have excellent charge pumps on them 

and it is generally recommended not to bypass it.  In doing so, all models concerning phase noise 

and spurs presented in this book become invalid. In fact, most modern PLLs do not have these 

differential phase detector outputs, with one notable exception of the Texas Instruments LMX2492 

that allows the up and down signals to be multiplexed to some of the output pins.  For those who 

insist on bypassing the charge pump and using these differential outputs, this chapter is included. 

 

Loop Filter Topology      

 

-

+

R3

 

C3

R2 C2

R1

R1

R2

C2

fR

fN

 

Figure 42.1  Active Filter Topology Used 

 

The transfer function of the filter is given by: 

 

𝑍(𝑠) =  
1 + 𝑠 ∙ 𝑇2

𝑠 ∙ 𝑇 ∙ (1 + 𝑠 ∙ 𝑇1)
 (42.1)  

 

The poles are defined as follows: 

 

𝑇2 = 𝑅2 ∙ 𝐶2 (42.2)  

𝑇1 = 𝑅3 ∙ 𝐶3 (42.3)  

𝑇 = 𝑅1 ∙ 𝐶2 (42.4)  
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The open loop gain is given by: 

 

𝐺(𝑠) =  
𝐾𝑉 ∙ 𝐾𝑉𝐶𝑂 ∙ (1 + 𝑠 ∙ 𝑇2)

𝑠2 ∙ 𝑇 ∙ (1 + 𝑠 ∙ 𝑇1)
 (42.5)  

 

This transfer function has many similarities to the one for the passive second order filter.  If the 

following substitutions are applied to expression for the open loop response for the second order 

filter, then the result is the transfer function for this loop filter topology.  In these equations, KV 

represents the maximum voltage output level of the phase detector outputs. 

𝑇 ⇒ 𝐴0 (42.6)  

 

𝐾𝑉  ⇒ 𝐾𝑃𝐷 (42.7)  

 

The case where R3 = C3 = 0 presents a special case and has different equations, but is a topology 

that is sometimes used.  This approach will be referred to as the alternative approach, and the case 

where T1>0 will be referred to as the standard approach.  In either case, the equations for the time 

constants and filter components are shown in Table 42.1 . 

 

Component Standard Approach Alternative Approach 

T1 
𝑠𝑒𝑐(𝜙) − 𝑡𝑎𝑛(𝜙)

𝜔𝑐
 0 

T2 
𝛾

𝜔𝑐2 ∙ 𝑇1
 

𝑡𝑎𝑛(𝜙)

𝜔𝑐
 

T 
𝐾𝑉 ∙ 𝐾𝑉𝐶𝑂
𝑁 ∙ 𝜔𝑐2

∙ √
1 + 𝜔𝑐2 ∙ 𝑇22

1 + 𝜔𝑐2 ∙ 𝑇12
 

𝐾𝑉 ∙ 𝐾𝑉𝐶𝑂
𝑁 ∙ 𝜔𝑐2 ∙ 𝑐𝑜𝑠(𝜙)

 

C2 Choose this value Choose this value 

R2 
𝑇2

𝐶2
 

𝑇2

𝐶2
 

R1 
𝑇

𝐶2
 

𝑇

𝐶2
 

C3 Free to Choose. 0 

R3 
𝑇1

𝐶3
 0 

Table 42.1 Calculation of Components 
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Conclusion 

This chapter has presented design equations that can be used with the differential phase detector 

outputs.  This approach is generally not recommended, because it requires an op-amp and most 

PLLs do not have these differential output pins.  The reader should also be very aware of the states 

of the outputs.  For instance, when this type of loop filter is used with Texas Instruments’ 

LMX2301/05/15/20/25 PLLs, it is necessary to invert either fR or fN.  For the LMX2492, this 

signal can be routed to the TRIG1,TRIG2, MOD, and MUXout pins. 

There are other approaches to loop filter design using these differential outputs.  One such approach 

is to omit the components R3 and C3.  This topology is more popular with older PLL designs than 

newer ones.   

The lock time can be predicted with a formula, but the phase noise and spurs for this filter differ 

than those in a passive filter.  The BasePulseSpur and 1HzNoiseFloor are different, since the charge 

pump has been bypassed. 

 

Reference 

[1] Phase-Locked Loop Design Fundamentals  Application Note 535 Motorola Semiconductor 

Products, 1970 
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Chapter 43      Partially Integrated Loop Filters 

 

KPD  

R3

R2

C2

 

C1 C3

R4

 

C4

 

Introduction 

In the age of higher integration, it is becoming more common practice for the VCO and loop filter 

to be integrated with the PLL synthesizer.  Aside from cost and size, another advantage of partially 

integrating the loop filter is that it may be able to help filter crosstalk on the chip that can get to 

the VCO.  The biggest disadvantage is that it is less flexible and integrating larger capacitors on 

silicon can be an expensive use of die area.  A good compromise is for the loop filter to be partially 

integrated.   This practice tends to be more common for passive filters, so this is the main focus on 

this chapter, but there is a section at the end to address active filters for the purposes of completion.   

As there are many combinations, only the more common combinations will be covered.  For those 

designs not covered, the logic and reasoning used to derive the examples can be used as a guide 

for the other cases.  In this chapter, the cases covered will fall under one of the following categories.  

 

1. Second order loop filter 

a. Exactly One Component is fixed  

i. This forces the loop bandwidth 

2. Third Order Loop Filter 

a. Exactly One component is fixed  

i. Loop parameters are free 

ii. The valid range to fix one component is restricted 

b. R3 and C3 are Fixed  

i. T3/T1 ratio is forced 

ii. The loop bandwidth is restricted to a maximum possible value 

iii. The phase margin will be close, but slightly off 

3. Fourth Order Filters 

a. R3, R4, C3, and C4 are Fixed 

i. T3/T1 ratio is fixed 

ii. T4/T3 ratio is fixed 

iii. The loop bandwidth is restricted to a maximum possible value 

iv. The loop bandwidth will be close, but slightly off 

v. The  phase margin will be close, but slightly off 

vi. The gamma optimization parameter will be close, but slightly off 
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General Concepts 

Calculation of the Pole Sum Constant,  

For all filters, one can define a constant that depends only on phase margin and gamma that comes 

up in many situations.   

 

𝜅 =  
√(1 + 𝛾)2 ∙ 𝑡𝑎𝑛2𝜙 + 4 ∙ 𝛾   − (1 + 𝛾) ∙ 𝑡𝑎𝑛 𝜙 

2
 (43.1)  

 

The following relationship holds exactly in the case of a 2nd order filter and is a very good 

approximation in the case of higher order filters. 

 

𝑇1 + 𝑇3 + 𝑇4 ≈   
𝜅 

𝜔𝑐
 (43.2)  

 

If we assume that the phase margin and gamma are chosen, then  will be a constant and this 

relationship will be very useful in determining the components. 

 

Calculation of the Time Constant, T2 

For all filters, the pole sum constant can be used to approximate T2. 

 

𝑇2 =  
𝛾 

𝜔𝑐2 ∙ (𝑇1 + 𝑇3 + 𝑇4)
≈  

𝛾 

𝜔𝑐 ∙ 𝜅
  (43.3)  

 

 

Second Order Loop Filter with Exactly One Component Integrated 

General Relationships 

Using the known relationships, the following equations can be derived without introducing any 

approximations. 

 

𝑇1 =  
𝜅 

𝜔𝑐
 (43.4)  

 

𝑇2 =  
𝛾 

𝜔𝑐 ∙ 𝜅
  (43.5)  
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From this, the ratio of time constants can be found. 

 

 
𝑇2 

𝑇1
=  

𝛾 

𝜅2
  (43.6)  

 

𝑇2 

𝑇1
=  

𝑅2 ∙ 𝐶2

(
𝑅2 ∙ 𝐶2 ∙ 𝐶1
𝐶1 + 𝐶2 )

 = 1 + 
𝐶2 

𝐶1
  (43.7)  

 

This allows the ratio of the capacitors to be expressed in a simple form that can be used to find C2 

from C1 or vice versa. 

 

𝐶2 

𝐶1
=  

𝛾

𝜅2
 − 1 (43.8)  

 

Another relationship can be derived from the loop filter coefficient A0. 

 

 

𝐴0 = 𝐶1 + 𝐶2 =  
𝐾𝑃𝐷 ∙ 𝐾𝑉𝐶𝑂
𝑁 ∙ 𝜔𝑐2

 ∙
√1 + (

𝛾
𝜅)

2

1 + 𝜅2
 

(43.9)  

 

 

This can be manipulated to find the loop bandwidth. 

 

 

𝜔𝑐 =  
√𝐾𝑃𝐷 ∙ 𝐾𝑉𝐶𝑂

𝑁 ∙ 𝐴0
 ∙
√1 + (

𝛾
𝜅)

2

1 + 𝜅2
 

(43.10)  
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C1 or C2 is Fixed 

Since the relationship between C1 and C2 is known, if you know one, the other can be easily found.  

For instance, if C1 is known, C2 can be found. 

 

𝐶2 =  𝐶1 ∙ (
𝛾

𝜅2
 − 1) (43.11)  

 

If C2 is known, C1 can easily be found. 

 

 

𝐶1 =  
𝐶2

𝛾
𝜅2
 − 1

 (43.12)  

 

Once these two are known, the loop bandwidth can easily be calculated. 

 

 

𝜔𝑐 =  
√ 𝐾𝑃𝐷 ∙ 𝐾𝑉𝐶𝑂
𝑁 ∙ (𝐶1 + 𝐶2)

 ∙
√1 + (

𝛾
𝜅)

2

1 + 𝜅2
 

(43.13)  

 

 

 

Once the loop bandwidth is known, T2 can be calculated.  This result can then be used to find R2. 

 

 

𝑇2 =  
𝛾

𝜔𝑐 ∙ 𝜅
 (43.14)  

 

 

𝑅2 =  
𝑇2

𝐶2
 (43.15)  
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R2 is Fixed 

In this case, some work is needed to find the loop bandwidth.  We can say that: 

 

𝐶2 =  
𝑇2

𝑅2
   ⇒   𝐶2 =

𝛾

𝜔𝑐 ∙ 𝜅 ∙ 𝑅2
  (43.16)  

 

Substituting this into the expression for loop bandwidth yields the following equation. 

 

 

𝜔𝑐 =  

√
  
  
  
  
  
 

𝐾𝑃𝐷 ∙ 𝐾𝑉𝐶𝑂

𝑁 ∙ (
𝛾

𝜔𝑐 ∙ 𝜅 ∙ 𝑅2) ∙
(

1
𝛾
𝜅2
 − 1

+ 1)

 ∙
√1 + (

𝛾
𝜅)

2

1 + 𝜅2
 

(43.17)  

 

 

This equation can be solved for c. 

 

𝜔𝑐 =  
𝐾𝑃𝐷 ∙ 𝐾𝑉𝐶𝑂 ∙ 𝑅2 ∙ (𝛾 − 𝜅2) ∙ 𝜅

𝑁 ∙ 𝛾2
 ∙
√1 + (

𝛾
𝜅
)
2

1 + 𝜅2
 

(43.18)  

 

Once the loop bandwidth is found, it is easy to solve for the other components. 

 

𝑇2 =  
𝛾

𝜔𝑐 ∙ 𝜅
 (43.19)  

 

𝐶2 =  
𝑇2

𝑅2
 (43.20)  

 

𝐶1 =  
𝐶2
𝛾
𝜅2
− 1

 (43.21)  
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Third Order Loop Filter with Exactly One Component Integrated 

Recall that the third order passive filter has one degree of freedom.   To satisfy this, an additional 

constraint was specified to maximize the value of C3.  However, if a component is already 

specified, then all that is necessary to do is to drop this constraint, and plug in the known value and 

solve.  The following filter constants are for a passive third order filter and will be used throughout 

this section. 

 

𝑇2 = 𝑅2 ∙ 𝐶2 (43.22)  

𝐴2 =  𝐶1 ∙ 𝑇2 ∙ 𝐶3 ∙ 𝑅3 (43.23)  

𝐴1 = 𝑇2 ∙ (𝐶1 + 𝐶3) + 𝐶1 ∙ 𝐶3 ∙ 𝑅3 + 𝐶2 ∙ 𝐶3 ∙ 𝑅3 (43.24)  

𝐴0 = 𝐶1 + 𝐶2 + 𝐶3 (43.25)  

 

C2 or R2 is Fixed 

The basic strategy in this case is to find C2, if it is not known already.  Then from this case, one 

can focus on finding the other components from C2.  For instance, if R2 is the specified component, 

then C2 can easily be found. 

 

𝐶2 =
𝑇2

𝑅2
 (43.26)  

 

The next step is to find the value of C1.  For this, realize that the product of C3 and R3 can be 

found from (43.23).  Combined with (43.24) and (43.25), the following equations can be derived. 

 

𝐴1 = 𝑇2 ∙ (𝐶1 + 𝐶3) + 𝐶1 ∙ (
𝐴2

𝐶1 ∙ 𝑇2
) + 𝐶2 ∙ (

𝐴2

𝐶1 ∙ 𝑇2
) (43.27)  

 

𝐶3 = 𝐴0 − 𝐶1 − 𝐶2 (43.28)  

 

Combining these two equations gives the following relationship between C1 and C2. 

 

𝐴1 = 𝑇2 ∙ 𝐴0 − 𝑇2 ∙ 𝐶2 −
𝐴2

𝑇2
+
𝐶2

𝐶1
∙ (
𝐴2

𝑇2
) (43.29)  
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This can be rearranged to find the equation for C1. 

 

𝐶1 =
𝐴2

𝑇2
∙

𝐶2

𝐴1 − 𝑇2 ∙ (𝐴0 − 𝐶2) −
𝐴2
𝑇2

 (43.30)  

 

At this point, C1, C2, and R2 are all known and C3 and R3 can easily be found. 

 

𝐶3 = 𝐴0 − 𝐶1 − 𝐶2 (43.31)  

 

𝑅3 =
𝐴2

𝑇2 ∙ 𝐶1 ∙ 𝐶3
 (43.32)  

 

C1 or C3 is Fixed  

If C1 is the fixed component, then C3 can be derived by (39.20) as used for the third order passive 

filter.   

 

𝐶3 =   
−𝑇22 ∙ 𝐶12 + 𝑇2 ∙ 𝐴1 ∙ 𝐶1 − 𝐴2 ∙ 𝐴0

𝑇22 ∙ 𝐶1 − 𝐴2
 (43.33)  

 

In the case that C3 is fixed, some work is needed to find C1.  Note that there is a maximum value 

for C3 that would be the value for the unrestricted third order filter.  The approach is to rearrange 

the equations in order to find an expression for the product of C3 and R3.   

 

𝐴2

𝑇2 ∙ 𝐶1
 =  𝐶3 ∙ 𝑅3 (43.34)  

 

The next step is to substitute this into the equation for A1. 

𝐴1 − 𝑇2 ∙ 𝐶3 = 𝑇2 ∙ 𝐶1 + (𝐴0 − 𝐶3) ∙
𝐴2

𝑇2 ∙ 𝐶1
 (43.35)  

 

This leads to a quadratic equation for C1 that has the following solution. 

 

𝐶1 =
𝐴1 − 𝑇2 ∙ 𝐶3 + √(𝐴1 − 𝑇2 ∙ 𝐶3)2 − 4 ∙ (𝐴0 − 𝐶3)

2 ∙ 𝑇2
 (43.36)  
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Note that it is possible for this expression to C1 to not be a positive real number, so this check 

needs to be made to ensure this.  Assuming that the solution for C1 is proper, the other components 

can be easily found. 

 

𝐶2 = 𝐴0 − 𝐶1 − 𝐶3 (43.37)  

 

𝑅2 =
𝑇2

𝐶2
 (43.38)  

 

𝑅3 =
𝐴2

𝐶1 ∙ 𝐶3 ∙ 𝑇2
 (43.39)  

 

R3 is Fixed 

This case has some similarities to the case where C3 is integrated, but does involve more work.  If 

R3 is too small, it causes issues, just as having C3 too large.  The first step is to arrange the filter 

coefficient equations as shown. 

𝐴2

𝑇2 ∙ 𝑅3
 =  𝐶1 ∙ 𝐶3 (43.40)  

𝐴1 −
𝐴2

𝑇2
= 𝑇2 ∙ 𝐶3 + 𝐶1 ∙ 𝑇2 + 𝐶2 ∙ 𝐶3 ∙ 𝑅3 (43.41)  

𝐴0 = 𝐶1 + 𝐶2 + 𝐶3 (43.42)  

These can be combined to create the following equation. 

𝐴1 −
𝐴2

𝑇2
=

𝐴2

𝐶1 ∙ 𝑅3
+ 𝐶1 ∙ 𝑇2 + (𝐴0 − 𝐶1 −

𝐴2

𝑇2 ∙ 𝑅3 ∙ 𝐶1
) ∙

𝐴2

𝑇2 ∙ 𝐶1
 (43.43)  

 

This equation can be arranged to form a cubic polynomial in C1, which can be solved. 

𝑇2 ∙ 𝐶13 −  𝐴1 ∙ 𝐶12 + (
𝐴2

𝑅3
+
𝐴0 ∙ 𝐴2

𝑇2
) ∙ 𝐶1 −

𝐴22

𝑇22 ∙ 𝑅3
 =  0 (43.44)  

 

C2 can be solved for in terms of C1 as follows: 

 

𝐶2 =   
𝐴1 ∙ 𝐶1 ∙ 𝑇1 − 𝐴2 ∙ 𝐶1 − 𝐶1 ∙ 𝐴0 ∙ 𝑇22

𝐴2 − 𝑇22 ∙ 𝐶1
 (43.45)  

 

Once these components are known, R2 and C3 can be easily found.  
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The Loop Filter is Third Order with R3 and C3 Integrated 

Finding the New Filter Coefficients and Time Constants 

Under the assumption that R3 and C3 are known, the challenge is that this puts a restriction on the 

loop parameters and T3/T1 cannot be chosen if one wants the other parameters as desired.  It also 

puts a restriction on the loop bandwidth as well.  What this means is that all the filter coefficients 

and constants have to be treated as unknowns.  However, they can be found from the design 

parameters.  The first step is to find an expression for the sum of the poles, which has already been 

found. 

 

𝑇1 + 𝑇3 ≈  
𝜅

𝜔𝑐
 (43.46)  

 

𝑇2 ≈  
𝛾

𝜔𝑐 ∙ 𝜅
 (43.47)  

 

The second step is much more involved and involves finding an expression for the product of the 

two poles, T1 and T3.   This starts with taking the filter design equations and equation for A0.   

𝑇2 = 𝑅2 ∙ 𝐶2 (43.48)  

𝐴2 = 𝐴0 ∙ 𝑇1 ∙ 𝑇3 =  𝐶1 ∙ 𝑇2 ∙ 𝐶3 ∙ 𝑅3 (43.49)  

𝐴1 = 𝐴0 ∙ (𝑇1 + 𝑇3) = 𝑇2 ∙ 𝐶3 + 𝐶1 ∙ 𝑇2 + 𝐶1 ∙ 𝐶3 ∙ 𝑅3 + 𝐶2 ∙ 𝐶3 ∙ 𝑅3 (43.50)  

𝐴0 = 𝐶1 + 𝐶2 + 𝐶3 (43.51)  

 

These equations can be combined to eliminate C2 and R2. 

 

𝐴0

𝑇2 ∙ 𝐶3 ∙ 𝑅3
=

𝐶1

𝑇1 ∙ 𝑇3
 (43.52)  

 

𝐴0 ∙
𝜅

𝜔𝑐
= 𝐶3 ∙ 𝑇2 + 𝐶1 ∙ 𝑇2 + (𝐴0 − 𝐶3) ∙ 𝑅3 ∙ 𝐶3 (43.53)  

 

These equations can be combined to eliminate C1 and express A0 in terms of other quantities. 

 

𝐴0 ∙
𝜅

𝜔𝑐
= 𝑇2 ∙ 𝐶3 +

𝐴0 ∙ 𝑇1 ∙ 𝑇3

𝐶3 ∙ 𝑅3
+ (𝐴0 − 𝐶3) ∙ 𝑅3 ∙ 𝐶3 (43.54)  
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This equation can be solved for A0. 

 

𝐴0 =
𝑅3 ∙ 𝐶32 ∙ (𝑇2 − 𝑅3 ∙ 𝐶3)

𝜅
𝜔𝑐 ∙ 𝑅3 ∙ 𝐶3 − 𝑇1 ∙ 𝑇3 − (𝑅3 ∙ 𝐶3)2

 (43.55)  

 

Recall that A0 can also be calculated in a different way. 

 

𝐴0 =
𝐾𝑃𝐷 ∙ 𝐾𝑉𝐶𝑂
𝜔𝑐2 ∙ 𝑁

∙ √
1 + 𝜔𝑐2 ∙ 𝑇22

(1 + 𝜔𝑐2 ∙ 𝑇12) ∙ (1 + 𝜔𝑐2 ∙ 𝑇32)
 (43.56)  

.  

This can also be expressed in another form with T1∙T3 and T1+T3 being the only unknowns. 

 

𝐴0 =
𝐾𝑃𝐷 ∙ 𝐾𝑉𝐶𝑂
𝜔𝑐2 ∙ 𝑁

∙ √
1 + 𝜔𝑐2 ∙ 𝑇22

1 + 𝜔𝑐2 ∙ (𝑇1 + 𝑇3)2 − 2 ∙ 𝜔𝑐2 ∙ 𝑇1 ∙ 𝑇3 + 𝜔𝑐4 ∙ (𝑇1 ∙ 𝑇3)2
 (43.57)  

 

Some further approximate relations can be substituted for T2 and T1+T3. 

 

𝐴0 =
𝐾𝑃𝐷 ∙ 𝐾𝑉𝐶𝑂
𝜔𝑐2 ∙ 𝑁

∙ √
1 + (

𝛾
𝜅)

2

1 + 𝜅2 − 2 ∙ 𝜔𝑐2 ∙ (𝑇1 ∙ 𝑇3) + 𝜔𝑐4 ∙ (𝑇1 ∙ 𝑇3)2
 

(43.58)  

 

Equations (43.55) and (43.56) are both for finding A0 and can be equated.   

 

𝜔𝑐2 ∙ 𝑅3 ∙ 𝐶32 ∙ (𝑇2 − 𝑅3 ∙ 𝐶3)

𝜔𝑐 ∙ 𝜅 ∙ 𝑅3 ∙ 𝐶3 − 𝜔𝑐2 ∙ 𝑇1 ∙ 𝑇3 − 𝜔𝑐2 ∙ (𝑅3 ∙ 𝐶3)2

=
𝐾𝑃𝐷 ∙ 𝐾𝑉𝐶𝑂
𝜔𝑐2 ∙ 𝑁 ∙ 𝜅

∙ √
𝜅2 + 𝛾2

1 + 𝜅2 − 2 ∙ 𝜔𝑐2 ∙ 𝑇1 ∙ 𝑇3 + 𝜔𝑐4 ∙ (𝑇1 ∙ 𝑇3)2
 

(43.59)  
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The expression can be expressed in a simpler form using some substitutions 

 

𝐴

𝐵 − 𝑥
=

1

√𝜅2 + (1 − 𝑥)2
 (43.60)  

 

𝐴 =
𝜔𝑐4 ∙ 𝑁 ∙ 𝜅 ∙ 𝑅3 ∙ 𝐶32 ∙ (𝑇2 − 𝑅3 ∙ 𝐶3)

𝐾𝑃𝐷 ∙ 𝐾𝑉𝐶𝑂 ∙ √𝜅2 + 𝛾2
 (43.61)  

 

𝐵 = 𝜔𝑐 ∙ 𝜅 ∙ 𝑅3 ∙ 𝐶3 − 𝜔𝑐2 ∙ (𝑅3 ∙ 𝐶3)2 (43.62)  

 

𝑥 = 𝜔𝑐2 ∙ 𝑇1 ∙ 𝑇3 (43.63)  

 

This can be written in the form of a quadratic equation: 

 

(1 − 𝐴2) ∙ 𝑥2 + 2 ∙ (𝐴2 − 𝐵) ∙ 𝑥 + (𝐵2 − 𝐴2 − 𝐴2 ∙ 𝜅2) =  0 

 
(43.64)  

The product of the poles can be found by using the quadric formula. 

 

𝑇1 ∙ 𝑇3 =  
𝑥

𝜔𝑐2
= 
𝐵 − 𝐴2 ±√(𝐴2 − 𝐵)2 + (𝐴2 − 1) ∙ (𝐵2 − 𝐴2 − 𝐴2 ∙ 𝜅2)

𝜔𝑐2 ∙ (1 − 𝐴2)
 (43.65)  

 

This formula can be further simplified. 

 

(𝑇1 ∙ 𝑇3) =  
𝐵 − 𝐴2 ± 𝐴 ∙ √𝜅2 ∙ (1 − 𝐴2) + (𝐵 − 1)2

𝜔𝑐2 ∙ (1 − 𝐴2)
 (43.66)  

 

One needs to check which solution gives the correct answer for (43.66);   the wrong one will have 

a negative sign.  From this, the loop filter coefficient A0 can be found. 

 

𝐴0 =
𝑅3 ∙ 𝐶32 ∙ (𝑇2 − 𝑅3 ∙ 𝐶3)

𝜅
𝜔𝑐 ∙ 𝑅3 ∙ 𝐶3 −

(𝑇1 ∙ 𝑇3) − (𝑅3 ∙ 𝐶3)2
 (43.67)  
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Now the other components are easy to find. 

 

𝐶1 =
𝐴0 ∙ (𝑇1 ∙ 𝑇3)

𝑇2 ∙ 𝑅3 ∙ 𝐶3
 (43.68)  

 

𝐶2 = 𝐴0 − 𝐶1 − 𝐶3 (43.69)  

 

𝑅2 =
𝑇2

𝐶2
 (43.70)  

 

Finding the Maximum Possible Loop Bandwidth 

For the reader who has not grown weary of this case, the maximum possible loop bandwidth for 

components can be found.  This can be done by setting T1 to zero in equation (43.59) and T2 as 

defined in (43.47).   

𝜔𝑐𝑚𝑎𝑥
3 ∙ 𝐶3 ∙ (

𝛾
𝜔𝑐𝑚𝑎𝑥 ∙ 𝜅

− 𝑅3 ∙ 𝐶3)

𝜅 − 𝜔𝑐𝑚𝑎𝑥 ∙ 𝑅3 ∙ 𝐶3
=
𝐾𝑃𝐷 ∙ 𝐾𝑉𝐶𝑂
𝑁 ∙ 𝜅

∙ √
𝜅2 + 𝛾2

1 + 𝜅2
 (43.71)  

 

This leads to the following cubic equation. 

 

𝜔𝑐𝑚𝑎𝑥
3 + 𝑏2 ∙ 𝜔𝑐𝑚𝑎𝑥

2 + 𝑏1 ∙ 𝜔𝑐𝑚𝑎𝑥 + 𝑏0 = 0 (43.72)  

 

𝑏2 =  − 
𝛾

𝜅 ∙ 𝑅3 ∙ 𝐶3
 (43.73)  

𝑏1 =  − 
𝐾𝑃𝐷 ∙ 𝐾𝑉𝐶𝑂
𝜅 ∙ 𝑁 ∙ 𝐶3

∙ √
𝜅2 + 𝛾2

1 + 𝜅2
 (43.74)  

𝑏0 =  
𝐾𝑃𝐷 ∙ 𝐾𝑉𝐶𝑂
𝑁 ∙ 𝑅3 ∙ 𝐶32

∙ √
𝜅2 + 𝛾2

1 + 𝜅2
 (43.75)  

 

This cubic polynomial can be solved to find the maximum possible loop bandwidth exactly.  Care 

must be taken to choose the proper root.  To check this, consider only the positive real roots.  If 

there is more than one positive real root, then the correct one can be found by finding the 

component values with them and seeing which one leads to positive component values.   
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What to do if the Maximum Achievable Loop Bandwidth is Exceeded 

If this maximum loop bandwidth is greater than the specified loop bandwidth, there are a few 

options: 

(1) Choose this maximum loop bandwidth which will lead to C1 = 0 and one less pole.  

However, it will have the maximum loop bandwidth. 

(2) Respecify the loop bandwidth to something less than this maximum loop bandwidth and 

redesign. 

(3) Lower the phase margin and/or increase gamma to increase the maximum achievable loop 

bandwidth. 

 

In the first scenario when one chooses to keep this maximum loop bandwidth and make C1=0, the 

design equations are simplified by setting T1∙T3 = 0.  For this scenario, the filter values can be 

found. 

 

𝑇2 =  
𝛾

𝜔𝑐𝑚𝑎𝑥 ∙ 𝜅
 (43.76)  

 

𝐴0 =
𝐾𝑃𝐷 ∙ 𝐾𝑉𝐶𝑂
𝑁 ∙ 𝜅 ∙ 𝜔𝑐𝑚𝑎𝑥

∙ √
𝛾 + 𝜅2

1 + 𝜅2
 (43.77)  

 

𝐶1 = 0 (43.78)  

 

𝐶2 = 𝐴0 − 𝐶3 (43.79)  

 

𝑅2 = 
𝑇2

𝐶2
 (43.80)  

 

 

 

 

 

 

  



Partially Integrated Loop Filters  

 

403 

 

Passive Fourth Order Filter 

One or Two Components is Integrated 

In this case, an exact solution exists.  However, for some cases, this may involve negative or 

complex component values.  As there are 28 cases and many of them are not too likely, only one 

of them will be covered.   

 

Case of a Passive Fourth Order Loop Filter with C3, R3, C4, and R4 Integrated 

When the case of a third order filter was considered, an approximation was already introduced.  In 

this case of a fourth order passive partially integrated filter, the attempt to find an elegant closed 

form solution without introducing any approximations or resulting to numerical methods is left to 

the avid and very determined reader, if even possible all.  For everybody else, it greatly simplifies 

the problem to approximate R3, R4, C3, and C4 as a simple RC low pass filter and then apply the 

third order passive formulas.  In order to get this approximate low pass filter, two constraints need 

to be applied.  Two possible constraints are that at a frequency equal to the loop bandwidth, the 

loading on the filter and the transfer function through these components need to be the same as it 

would be if all four components were used.  The load of the four components is: 

𝐿(𝑠) = 𝑅3 + 

1
𝑠 ∙ 𝐶3 ∙ (𝑅4 +

1
𝑠 ∙ 𝐶4)

1
𝑠 ∙ 𝐶3 +

1
𝑠 ∙ 𝐶4 + 𝑅4

 (43.81)  

The transfer function of the four components is: 

𝑇(𝑠) =  
1

1 + 𝑠 ∙ (𝐶3 ∙ 𝑅3 + 𝐶4 ∙ 𝑅3 + 𝐶4 ∙ 𝑅3) + 𝑠2 ∙ 𝐶3 ∙ 𝐶4 ∙ 𝑅3 ∙ 𝑅4
 (43.82)  

 

Now, since there are actually two components, these two constraints can be met exactly.  The 

component, C, will always be real and can be found. 

𝐶 =  
−1

𝜔𝑐 ∙ 𝐼𝑚𝑎𝑔{ 𝐿(𝑗 ∙ 𝜔𝑐) }
 (43.83)  

 

However, R will be complex in general.  An approximation needs to be introduced where R is 

approximated with its real component. 

 

𝑅 =  𝑅𝑒𝑎𝑙 (

1
𝑇( 𝑗 ∙ 𝜔𝑐 )

− 1

𝐶 ∙ 𝑗 ∙ 𝜔𝑐
) (43.84)  

 

From this, the equations for the third order filter can be applied. 
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Active Partially Integrated Filters 

General Comments 

Integrated active filters tend to be much less common, but for the sake of completeness, they are 

addressed here.  The mathematics are greatly simplified because the op-amp adds isolation between 

the poles.  In general, the same general relationships hold. 

 

𝑇1 + 𝑇3 + 𝑇4 =  
𝜅 

𝜔𝑐
 (43.85)  

 

𝑇2 =  
𝛾 

𝜔𝑐 ∙ 𝜅
  (43.86)  

 

Second Order Filter with One Specified Component 

These equations are very similar to the passive case.  For the Active B case, they are the same.  For 

the Active C filter, they are the same, but the VCO gain is multiplied by the gain in the loop due 

to the op-amp.  For the Active A filter, the isolation of R1 and C1 makes it so that one can freely 

choose one and design the other component.    

 

Third Order Filter with One Specified Component 

If the specified component is R3 or C3, then this is a degree of freedom and one can design and 

have the same loop filter parameters.  If the integrated component is C1, C2 or R2, one could find 

equations, but this is a very rare scenario and is not handled. 

 

Third and Fourth Order Filters with R3, R4, C3, and C4 Specified 

In the case of a third order filter, consider R4=C4=0. For this case, the sum of the poles T3+T4 is 

easy to find from the components. 

 

𝑇3 + 𝑇4 =  𝐶3 ∙ 𝑅3 + 𝐶4 ∙ 𝑅3 + 𝐶4 ∙ 𝑅4 (43.87)  

 

The maximum achievable loop bandwidth is also easy to find once this sum is known by setting 

T1=0. 

 

𝜔𝑐𝑚𝑎𝑥 = 
𝜅 

𝑇3 + 𝑇4
 (43.88)  
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Pole T1 can be found as follows: 

 

𝑇1 =  
𝜅 

𝜔𝑐
− (𝑇3 + 𝑇4) (43.89)  

 

Now it is necessary to explicitly calculate the poles T3 and T4.  For the fourth order filter, the 

following equations can be used.  In the case of a third order filter, these calculations simplify to 

T3 equaling R3∙C3.   

 

𝑇3 =  
(𝑇3 + 𝑇4) + √(𝑇3 + 𝑇4)2 − 4 ∙ 𝐶3 ∙ 𝐶4 ∙ 𝑅3 ∙ 𝑅4

2
 (43.90)  

 

𝑇4 =  
(𝑇3 + 𝑇4) − √(𝑇3 + 𝑇4)2 − 4 ∙ 𝐶3 ∙ 𝐶4 ∙ 𝑅3 ∙ 𝑅4

2
 (43.91)  

 

The filter coefficient A0 can now be found.  AmpGain is included and is different than one in the 

case of an Active C filter. 

 

𝐴0 =
𝐾𝑃𝐷 ∙ 𝐾𝑉𝐶𝑂 ∙ 𝐴𝑚𝑝𝐺𝑎𝑖𝑛

𝜔𝑐2 ∙ 𝑁

∙ √
1 + 𝜔𝑐2 ∙ 𝑇22

(1 + 𝜔𝑐2 ∙ 𝑇12) ∙ (1 + 𝜔𝑐2 ∙ 𝑇32) ∙ (1 + 𝜔𝑐2 ∙ 𝑇42)
 

(43.92)  

 

Once A0 is known, the other components are easy to find.  For the Active A Filter: 

 

𝐶2 = 𝐴0 (43.93)  

 

𝑅2 =
𝑇2

𝐶2
 (43.94)  

 

Choose 𝑅1 = 10 ∙ 𝑅2 (43.95)  

 

𝐶1 =
𝑇1

𝑅1
 (43.96)  
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For the Active B and C Filters: 

 

𝐶1 =
𝑇1 ∙ 𝐴0

𝑇2
 (43.97)  

 

𝐶2 = 𝐴0 − 𝐶1 (43.98)  

 

𝑅2 =
𝑇2

𝐶2
 (43.99)  

 

Conclusion 

Partially integrated loop filters have come about in the age that more and more is being integrated.  

This chapter has discussed many possible configurations for this type of filter.  Aside from saving 

components, partially integrated loop filters may be useful because they can filter noise on the chip 

itself.  If the loop filter is integrated on chip, then there is a good probability that the VCO may 

also be integrated.  Crosstalk on chips should always be taken as a serious issue, and if at least part 

of the loop filter is on the chip, it may be able to filter noise that otherwise could not be filtered.  

Aside from dealing with the case that the component is integrated, the equations could also be used 

if one wanted to force a particular value of component in the loop filter.   

Forcing component values may put restrictions on the loop bandwidth, phase margin, gamma, or 

pole ratios.  In those cases where the loop filter is totally integrated, but there are selectable values 

for each component, the best approach might be to resort to computers and numerical methods. 
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Appendix A:  Design Examples for Partially Integrated Loop Filters 

 

All Loop Filters 

Unless otherwise specified, the conditions below apply to all of the examples presented in this 

appendix. 

 

Symbol  Description Value Units 

BW Loop Bandwidth 10 kHz 

f Phase Margin 50 degrees 

 Gamma Optimization Parameter 1 none 

KPD Charge Pump Gain 5 mA 

KVCO VCO Gain 20 MHz/V 

fVCO Output Frequency 2450 MHz 

fPD Phase detector frequency 200 kHz 

 

Calculate the Pole Sum Constant and N 

 

𝜅 =  
√(1 + 𝛾)2 ∙ 𝑡𝑎𝑛2𝜙 + 4 ∙ 𝛾 − (1 + 𝛾) ∙ 𝑡𝑎𝑛𝜙

2
 (43.100)  

 

𝑁 = 
𝑓𝑉𝐶𝑂
𝑓𝑃𝐷

 (43.101)  

 

Symbol  Description Value Units 

 Pole Sum Constant 0.3640 n/a 

N Feedback Divider 12250 n/a 

 

 

Second Order Loop Filters  

C1 is Fixed 

Assume that C2 is the one that is integrated.  If this is not the case and the integrated component is 

R2, the one an easily find C2 via one of these two equations. 

 

𝐶2 =  𝐶1 ∙ (
𝛾

𝜅2
 − 1) (43.102)  
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𝜔𝑐 =  
√ 𝐾𝑃𝐷 ∙ 𝐾𝑉𝐶𝑂
𝑁 ∙ (𝐶1 + 𝐶2)

 ∙
√1 + (

𝛾
𝜅)

2

1 + 𝜅2
 

(43.103)  

 

𝑅2 =  
𝑇2

𝐶2
 (43.104)  

 

𝑇2 

𝑇1
=  

𝛾 

𝜅2
  (43.105)  

 

Symbol  Description Value Units 

 Calculation Constant 0.3657 n/a 

C1 Specified C1 Value 0.82 nF 

C2 Loop Filter Capacitor 5.3699 nF 

p



2

c
 

Respecified Loop 

Bandwidth 
9.5802 kHz 

2 Loop Filter Zero 4.5643 x 10-5 s 

R2 Loop Filter Resistor 8.500 kW 

 

C2 is Fixed 

Assume that C2 is the one that is integrated.  If this is not the case and the integrated component is 

R2, the one an easily find C2 via one of these two equations. 

 

𝐶1 =  
𝐶2

𝛾
𝜅2
 − 1

 (43.106)  

 

𝜔𝑐 =  
√ 𝐾𝑃𝐷 ∙ 𝐾𝑉𝐶𝑂
𝑁 ∙ (𝐶1 + 𝐶2)

 ∙
√1 + (

𝛾
𝜅)

2

1 + 𝜅2
 

(43.107)  

 

𝑅2 =  
𝑇2

𝐶2
 (43.108)  

 

𝑇2 

𝑇1
=  

𝛾 

𝜅2
  (43.109)  
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Symbol  Description Value Units 

 Calculation Constant 0.3657 n/a 

C2 Specified C2 Value 4.7 nF 

C1 Loop Filter Capacitor 0.7177 nF 

p



2

c
 

Respecified Loop 

Bandwidth 
10.2403 kHz 

2 Loop Filter Zero 4.2701 x 10-5 s 

R2 Loop Filter Resistor 9.0854 kW 

 

 

R2 is Fixed 

𝜔𝑐 =  
𝐾𝑃𝐷 ∙ 𝐾𝑉𝐶𝑂 ∙ 𝑅2 ∙ (𝛾 − 𝜅2) ∙ 𝜅

𝑁 ∙ 𝛾2
 ∙
√1 + (

𝛾
𝜅)

2

1 + 𝜅2
 

(43.110)  

 

Once the loop bandwidth is found, it is easy to solve for the other components. 

 

𝑇2 =  
𝛾

𝜔𝑐 ∙ 𝜅
 (43.111)  

 

𝐶2 =  
𝑇2

𝑅2
 (43.112)  

 

𝐶1 =  
𝐶2
𝛾
𝜅2
− 1

 (43.113)  

 

Symbol  Description Value Units 

 Calculation Constant 0.3657 n/a 

R2 Specified Value 10 kW 

p



2

c
 

Respecified Loop 

Bandwidth 
11.2711 kHz 

2 Loop Filter Zero 3.8796 x 10-5 s 

C2 Loop Filter Capacitor 3.8796 nF 

R2 Loop Filter Resistor 0.5924 nF 

 

  



   410         Partially Integrated Loop Filters 

                              

Third Order Loop Filters 

 

Symbol  Description Value Units 

BW Loop Bandwidth 10 kHz 

f Phase Margin 50 degrees 

 Gamma Optimization Parameter 1 none 

T31 T3/T1 Pole Ratio 50 % 

KPD Charge Pump Gain 5 mA 

KVCO VCO Gain 20 MHz/V 

fVCO Output Frequency 2450 MHz 

fPD Phase detector frequency 200 kHz 

 

Third Order Filter of one Fixed Component 

In this case, the poles and time constants are calculated exactly. 

 

𝑇1 =  
𝑟𝑜𝑜𝑡 [∅ − 𝑡𝑎𝑛−1 (

𝛾
𝜔𝑐 ∙ 𝑇1 ∙ 𝛾 ∙ (1 + 𝑇31

) − 𝑡𝑎𝑛−1(𝜔𝑐 ∙ 𝑇1) − 𝑡𝑎𝑛−1(𝜔𝑐 ∙ 𝑇1 ∙ 𝑇31)]

𝜔𝑐
 

(43.114)  

 

𝑇3 =  𝑇1 ∙ 𝑇31 (43.115)  

 

𝑇2 =  
𝛾

𝜔𝑐2 ∙ (𝑇1 + 𝑇3)
 (43.116)  

 

𝐴0 =  
𝐾𝑃𝐷 ∙ 𝐾𝑉𝐶𝑂
𝜔𝑐2 ∙ 𝑁

∙ √
1 + 𝜔𝑐2 ∙ 𝑇22

(1 + 𝜔𝑐2 ∙ 𝑇12) ∙ (1 + 𝜔𝑐2 ∙ 𝑇32)
 (43.117)  

 

Symbol  Description Value Units 

T1 Loop Filter Pole 3.8057 x 10-6 s 

T2 Loop Filter Zero 4.4370 x 10-5 s 

T3 Loop Filter Pole 1.9032 x 10-6 s 

A0 Loop Filter Coefficient 5.9142 nF 

A1 Loop Filter Coefficient 3.3764 x 10-5 s∙nF 

A2 Loop Filter Coefficient 4.2837 x 10-11 s2∙nF 
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C1 is Fixed 

 

Symbol  Description Value Units 

C1 
Specified Loop Filter 

Capacitor 
0.390  nF 

C2 Loop Filter Capacitor 5.4808 nF 

R2 Loop Filter Resistor 8.0955 kW 

C3 Loop Filter Capacitor 43.4110 pF 

R3 Loop Filter Resistor 57.02845 kW 

 

 

𝐶3 =   
−𝑇22 ∙ 𝐶12 + 𝑇2 ∙ 𝐴1 ∙ 𝐶1 − 𝐴2 ∙ 𝐴0

𝑇22 ∙ 𝐶1 − 𝐴2
 (43.118)  

 

 

𝐶2 = 𝐴0 − 𝐶1 − 𝐶3 (43.119)  

 

 

𝑅2 =
𝑇2

𝐶2
 

(43.120)  

 

 

𝑅3 =
𝐴2

𝑇2 ∙ 𝐶1 ∙ 𝐶3
 (43.121)  
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C2 is Fixed 

 

Symbol  Description Value Units 

C2 
Specified Loop Filter 

Capacitor 
5.6  nF 

C1 Loop Filter Capacitor 0.2867 nF 

R2 Loop Filter Resistor 7.9232 kW 

C3 Loop Filter Capacitor 27.5034 pF 

R3 Loop Filter Resistor 122.4242 kW 

 

𝐶1 =
𝐴2

𝑇2
∙

𝐶2

𝐴1 − 𝑇2 ∙ (𝐴0 − 𝐶2) −
𝐴2
𝑇2

 (43.122)  

𝑅2 =
𝑇2

𝐶2
 (43.123)  

𝐶3 = 𝐴0 − 𝐶1 − 𝐶2 (43.124)  

𝑅3 =
𝐴2

𝑇2 ∙ 𝐶1 ∙ 𝐶3
 (43.125)  

 

𝐶1 =
𝐴2

𝑇2
∙

𝐶2

𝐴1 − 𝑇2 ∙ (𝐴0 − 𝐶2) −
𝐴2
𝑇2

 (43.126)  

 

At this point, C1, C2, and R2 are all known and C3 and R3 can easily be found. 

 

𝐶3 = 𝐴0 − 𝐶1 − 𝐶2 (43.127)  

𝑅3 =
𝐴2

𝑇2 ∙ 𝐶1 ∙ 𝐶3
 (43.128)  
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R2 is Fixed 

 

Symbol  Description Value Units 

R2 
Specified Loop Filter 

Resistor 
8.2 kW 

C2 Loop Filter Capacitor 5.4110 nF 

C1 Loop Filter Resistor 0.4990 nF 

C3 Loop Filter Capacitor 4.2385 pF 

R3 Loop Filter Resistor 456.4505 kW 

 

𝐶2 =
𝑇2

𝑅2
 (43.129)  

 

𝐶1 =
𝐴2

𝑇2
∙

𝐶2

𝐴1 − 𝑇2 ∙ (𝐴0 − 𝐶2) −
𝐴2
𝑇2

 (43.130)  

 

𝐶3 = 𝐴0 − 𝐶1 − 𝐶2 (43.131)  

 

𝑅3 =
𝐴2

𝑇2 ∙ 𝐶1 ∙ 𝐶3
 (43.132)  
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C3 is Fixed  

 

Symbol  Description Value Units 

C3 
Specified Loop Filter 

Capacitor 
33  nF 

C1 Loop Filter Capacitor 0.4311 nF 

C2 Loop Filter Resistor 5.4501 nF 

R2 Loop Filter Resistor 8.1411 kW 

R3 Loop Filter Resistor 67.8570 kW 

 

 

𝐶1 =
𝐴1 − 𝑇2 ∙ 𝐶3 + √(𝐴1 − 𝑇2 ∙ 𝐶3)2 − 4 ∙ (𝐴0 − 𝐶3)

2 ∙ 𝑇2
 (43.133)  

 

𝐶2 = 𝐴0 − 𝐶1 − 𝐶3 (43.134)  

 

𝑅2 =
𝑇2

𝐶2
 (43.135)  

 

𝑅3 =
𝐴2

𝐶1 ∙ 𝐶3 ∙ 𝑇2
 (43.136)  
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R3 is Fixed 

 

Symbol  Description Value Units 

R3 
Specified Loop Filter 

Capacitor 
68 kW 

C1 Loop Filter Capacitor 0.4314 nF 

C2 Loop Filter Resistor 5.4499 nF 

R2 Loop Filter Resistor 8.1414 kW 

C3 Loop Filter Capacitor 32.9093 pF 

 

The following cubic polynomial needs to be solved for C1. 

 

𝑇2 ∙ 𝐶13 −  𝐴1 ∙ 𝐶12 + (
𝐴2

𝑅3
+
𝐴0 ∙ 𝐴2

𝑇2
) ∙ 𝐶1 −

𝐴22

𝑇22 ∙ 𝑅3
 =  0 (43.137)  

 

𝐶2 =   
𝐴1 ∙ 𝐶1 ∙ 𝑇1 − 𝐴2 ∙ 𝐶1 − 𝐶1 ∙ 𝐴0 ∙ 𝑇22

𝐴2 − 𝑇22 ∙ 𝐶1
 (43.138)  

 

𝑅2 =
𝑇2

𝐶2
 (43.139)  

 

𝐶3 = 𝐴0 − 𝐶1 − 𝐶2 (43.140)  

 

𝑅3 =
𝐴2

𝑇2 ∙ 𝐶1 ∙ 𝐶3
 (43.141)  
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 Passive Third Order Loop Filter with R3 and C3 Integrated 

 

Symbol  Description Value Units 

C3 Specified Loop Filter Capacitor 100 pF 

R3 Specified Loop Filter Resistor 40 kW 

 Previously calculated constant 0.3657 n/a 

 

First calculate the loop bandwidth to ensure that it is not larger than the specified value. 

 

𝜔𝑐𝑚𝑎𝑥
3 + 𝑏2 ∙ 𝜔𝑐𝑚𝑎𝑥

2 + 𝑏1 ∙ 𝜔𝑐𝑚𝑎𝑥 + 𝑏0 = 0 (43.142)  

 

𝑏2 =  − 
𝛾

𝜅 ∙ 𝑅3 ∙ 𝐶3
 (43.143)  

 

𝑏1 =  − 
𝐾𝑃𝐷 ∙ 𝐾𝑉𝐶𝑂
𝜅 ∙ 𝑁 ∙ 𝐶3

∙ √
𝜅2 + 𝛾2

1 + 𝜅2
 (43.144)  

 

𝑏0 =  
𝐾𝑃𝐷 ∙ 𝐾𝑉𝐶𝑂
𝑁 ∙ 𝑅3 ∙ 𝐶32

∙ √
𝜅2 + 𝛾2

1 + 𝜅2
 (43.145)  

 

 

 

Symbol  Description Value Units 

b2 Calculated Value −6.8687 × 105 Hz 

b1 Calculated Value −2.2428 × 1011 Hz2 

b0 Calculated Value 2.0408 × 1016 Hz3 

𝝎𝒄𝒎𝒂𝒙
𝟐𝝅

 Maximum Attainable Bandwidth 12.0110 kHz 
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𝐴 =
𝜔𝑐4 ∙ 𝑁 ∙ 𝜅 ∙ 𝑅3 ∙ 𝐶32 ∙ (𝑇2 − 𝑅3 ∙ 𝐶3)

𝐾𝑃𝐷 ∙ 𝐾𝑉𝐶𝑂 ∙ √𝜅2 + 𝛾2
 (43.146)  

 

𝐵 = 𝜔𝑐 ∙ 𝜅 ∙ 𝑅3 ∙ 𝐶3 − 𝜔𝑐2 ∙ (𝑅3 ∙ 𝐶3)2 (43.147)  

 

 

(𝑇1 ∙ 𝑇3) =  
𝐵 − 𝐴2 ± 𝐴 ∙ √𝜅2 ∙ (1 − 𝐴2) + (𝐵 − 1)2

𝜔𝑐2 ∙ (1 − 𝐴2)
 (43.148)  

 

 

Symbol  Description Value Units 

A Calculated Value 1.0377 × 10-2 n/a 

B Calculated Value 2.8310 × 10-2 n/a 

𝑻𝟏 ∙ 𝑻𝟑 Calculated Value 4.4170 × 10-12 s2 

 

 

 

𝐴0 =
𝑅3 ∙ 𝐶32 ∙ (𝑇2 − 𝑅3 ∙ 𝐶3)

𝜅
𝜔𝑐 ∙ 𝑅3 ∙ 𝐶3 −

(𝑇1 ∙ 𝑇3) − (𝑅3 ∙ 𝐶3)2
 (43.149)  

 

𝐶1 =
𝐴0 ∙ (𝑇1 ∙ 𝑇3)

𝑇2 ∙ 𝑅3 ∙ 𝐶3
 (43.150)  

 

𝐶2 = 𝐴0 − 𝐶1 − 𝐶3 (43.151)  

 

𝑅2 =
𝑇2

𝐶2
 (43.152)  

 

Symbol  Description Value Units 

A0 Loop Filter Coefficient 5.7699 nF 

C1 Loop Filter Capacitor 0.1457 nF 

C2 Loop Filter Capacitor 5.5242 nF 

R2 Loop Filter Resistor 7.9156 kW 
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Passive Fourth Order Filter with C3, C4, R3, and R4 Fixed 

 

Symbol  Description Value Units 

BW Loop Bandwidth 10 kHz 

f Phase Margin 50 degrees 

 Gamma Optimization Parameter 1 none 

KPD Charge Pump Gain 5 mA 

KVCO VCO Gain 20 MHz/V 

fVCO Output Frequency 2450 MHz 

c Previously Calculated Value 62.382 kHz 

 Previously Calculated Constant 0.3657 n/a 

fPD Phase detector frequency 200 kHz 

C3 Specified Loop Filter Capacitor 100 pF 

C4 Specified Loop Filter Capacitor 100 pF 

R3 Specified Loop Filter Resistor 40 kW 

R4 Specified Loop Filter Resistor 40 kW 

 

𝐿 = [𝑅3 + 

1
𝑠 ∙ 𝐶3 ∙ (𝑅4 +

1
𝑠 ∙ 𝐶4)

1
𝑠 ∙ 𝐶3 + 

1
𝑠 ∙ 𝐶4 + 𝑅4

]

𝑠=𝑗∙𝜔𝑐

 (43.153)  

 

𝑇 = [ 
1

1 + 𝑠 ∙ (𝐶3 ∙ 𝑅3 + 𝐶4 ∙ 𝑅4 + 𝐶4 ∙ 𝑅3) + 𝑠2 ∙ 𝐶3 ∙ 𝐶4 ∙ 𝑅3 ∙ 𝑅4
]
𝑠=𝑗∙𝜔𝑐

 (43.154)  

 

𝐶 =
−1

𝜔𝑐 ∙ 𝑖𝑚𝑎𝑔(𝐿)
 (43.155)  

 

𝑅 = 𝑅𝑒𝑎𝑙 [ 

1
𝑇 − 1

𝑠 ∙ 𝐶
]

𝑠=𝑗∙𝜔𝑐

 (43.156)  

 

Symbol  Description Value Units 

L Effective Load     49.8445 – j∙80.8146 kW 

T Effective Transfer Function     0.6478 – j∙0.5214 n/a 

C Equivalent Resistance at Loop Bandwidth 0.1969 nF 

R Equivalent Capacitance at Loop Bandwidth 60.9328 kW 
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First calculate the loop bandwidth to ensure that it is not larger than the specified value. 

 

𝜔𝑐𝑚𝑎𝑥
3 + 𝑏2 ∙ 𝜔𝑐𝑚𝑎𝑥

2 + 𝑏1 ∙ 𝜔𝑐𝑚𝑎𝑥 + 𝑏0 = 0 (43.157)  

 

𝑏2 =  −
𝛾

𝜅 ∙ 𝑅3 ∙ 𝐶3
 (43.158)  

 

𝑏1 =  −
𝐾𝑃𝐷 ∙ 𝐾𝑉𝐶𝑂
𝜅 ∙ 𝑁 ∙ 𝐶3

∙ √
𝜅2 + 𝛾2

1 + 𝜅2
 (43.159)  

 

𝑏0 =  
𝐾𝑃𝐷 ∙ 𝐾𝑉𝐶𝑂
𝑁 ∙ 𝑅3 ∙ 𝐶32

∙ √
𝜅2 + 𝛾2

1 + 𝜅2
 (43.160)  

 

Symbol  Description Value Units 

b2 Calculated Value −2.2896 × 105 Hz 

b1 Calculated Value −1.1389 × 1011 Hz2 

b0 Calculated Value 3.4542 × 1015 Hz3 

𝜔𝑐𝑚𝑎𝑥
2𝜋

 Maximum Attainable Bandwidth 4.5943 kHz 

 

Now in this case, the maximum loop bandwidth is 4.5943 kHz, but the design was specified for 10 

kHz.  So both cases will be handled.  First, try designing for 4.5943 kHz.  In this case the following 

would be true. 

𝐶1 = 0 (43.161)  

 

𝐴0 =
𝐾𝑃𝐷 ∙ 𝐾𝑉𝐶𝑂
𝑁 ∙ 𝜅 ∙ 𝜔𝑐𝑚𝑎𝑥

∙ √
𝛾 + 𝜅2

1 + 𝜅2
 (43.162)  

 

𝐶2 =  𝐴0 − 𝐶3 − 𝐶4 (43.163)  

 

𝑅2 =
𝑇2

𝐶2
 

 

(43.164)  
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Symbol  Description Value Units 

A0 Calculated Value 26.9154 nF 

C1 Loop Filter Capacitor 0 nF 

C2 Calculated Value 26.7184 nF 

𝑹𝟐 Loop Filter Resistor 3.5622 kHz 

 

Let’s now assume that this was not what was wanted and re-design for a loop filter bandwidth of 

4 kHz to get around this limitation.  This will shift R, C, and the maximum attainable bandwidth 

slightly.  After using the same equations as before, the following results are obtained. 

 

Symbol  Description Value Units 

BW Loop Bandwidth 4 kHz 

L 
Load of integrated components at loop 

bandwidth 
    49.9668 – j∙173.78 kW 

T 
Transfer function value of integrated 

components at loop bandwidth 
    0.9023 – j∙0.3168 n/a 

C Equivalent Filter Capacitance 0.1995 nF 

R Equivalent Resistance 60.1512 kW 

b2 
Coefficient for max loop bandwidth 

calculation 
−2.2896 × 105 s-1 

b1 
Coefficient for max loop bandwidth 

calculation 
−1.1242 × 1011 s-2 

b0 
Coefficient for max loop bandwidth 

calculation 
  3.4099 × 1015 s-3 

𝝎𝒄𝒎𝒂𝒙
𝟐𝝅

 
Maximum Achievable Loop 

Bandwidth.   
4.5915 kHz 

 

𝑇2 =
𝜅

𝜔𝑐
 

 

(43.165)  

𝑇1 + 𝑇3 =
𝛾

𝜔𝑐 ∙ 𝜅
 

 

(43.166)  

 

𝐴 =
𝜔𝑐4 ∙ 𝑁 ∙ 𝜅 ∙ 𝑅3 ∙ 𝐶32 ∙ (𝑇2 − 𝑅3 ∙ 𝐶3)

𝐾𝑃𝐷 ∙ 𝐾𝑉𝐶𝑂 ∙ √𝜅2 + 𝛾2
 (43.167)  

 

𝐵 = 𝜔𝑐 ∙ 𝜅 ∙ 𝑅3 ∙ 𝐶3 − 𝜔𝑐2 ∙ (𝑅3 ∙ 𝐶3)2 (43.168)  
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(𝑇1 ∙ 𝑇3) =  
𝐵 − 𝐴2 ± 𝐴 ∙ √𝜅2 ∙ (1 − 𝐴2) + (𝐵 − 1)2

𝜔𝑐2 ∙ (1 − 𝐴2)
 (43.169)  

 

 

Symbol  Description Value Units 

T2 Calculated Value 1.0932 × 10-4 s 

T1+T3 Calculated Value 1.4482 × 10-5 s 

A Calculated Value 3.8946 × 10-3 n/a 

B Calculated Value 1.8813 × 10-2 n/a 

𝑻𝟏 ∙ 𝑻𝟑 Calculated Value 2.3307 × 10-11 s2 

 

 

𝐴0 =
𝑅3 ∙ 𝐶32 ∙ (𝑇2 − 𝑅3 ∙ 𝐶3)

𝜅
𝜔𝑐 ∙ 𝑅3 ∙ 𝐶3 −

(𝑇1 ∙ 𝑇3) − (𝑅3 ∙ 𝐶3)2
 (43.170)  

 

𝐶1 =
𝐴0 ∙ (𝑇1 ∙ 𝑇3)

𝑇2 ∙ 𝑅3 ∙ 𝐶3
 (43.171) 

 

𝐶2 = 𝐴0 − 𝐶1 − 𝐶3 (43.172)  

 

𝑅2 =
𝑇2

𝐶2
 (43.173)  

 

 

Symbol  Description Value Units 

A0 Loop Filter Coefficient 35.9746 nF 

C1 Loop Filter Capacitor 0.6392 nF 

C2 Loop Filter Capacitor 35.1360 nF 

R2 Loop Filter Resistor 3.1113 kW 
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Chapter 44      Switched and Multimode Loop Filter Design 

 

Introduction 

In some cases, the same PLL can be used to support multiple modes and frequencies.   For instance, 

some VCOs have a band switch pin that changes the frequency band in which they operate.  

Another example would be a cellular phone that needs a loop filter that supports both the CDMA 

and AMPS standards.   The phase noise, spur, and lock time requirements may be drastically 

different for these different standards.   In general, there are two types of situations.  For the first 

type of situation, there is no need to switch in additional components and the VCO frequency or 

phase detector frequency is changing, but the desire is to keep the loop bandwidth the same.  For 

the second situation, drastically different loop bandwidths are required and it is necessary to switch 

in components. 

 

Supporting Multiple Modes with the Same Bandwidth and No Component Switching 

Loop Gain Constant 

The concept used in many switched and multimode filters is the loop gain constant. 

𝐾 =  
𝐾𝑃𝐷 ∙ 𝐾𝑉𝐶𝑂

𝑁
 (44.1)  

If the loop gain constant is held the same, and the loop filter components are not changed, then the 

phase margin, loop bandwidth, gamma optimization factor, and pole ratios will all remain 

unchanged.  This is a strategy if the loop bandwidth is to remain about the same.   

 

The No Work Switched Filter 

This situation is where the filter is used for two or more different means, but no adjustments need 

to be made.  One common situation might be where two different VCO frequencies are used and 

the change in the N value tracks the VCO gain.    In other cases, it might be that the requirements 

are lax enough that it is not necessary to go through additional effort.  If considering using this 

approach, the second order loop filter is often a good choice because it is more resistant to changes 

in the loop gain.   

 

The No Switched Component Filter 

In this situation, the charge pump setting can be programmed to different settings to account for 

differences in the N divider value, VCO gain, or phase detector frequency.  For instance, consider 

an integer PLL with the same VCO with one application that uses a 3 MHz phase detector and 

another that uses a 5 MHz phase detector frequency.  In this situation, one could make the ratio of 

the charge pump currents 3:5 and this would balance the loop gain constant.  In other words one 

could use a charge pump current of 3 mA with the 5 MHz phase detector frequency and 5 mA with 

the 3 MHz phase detector frequency.   In this case, the loop bandwidth is the same for both 

applications. 
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Supporting Multiple Loop Bandwidths and Switching in Components 

Using the Fastlock Resistor for Switched Filters 

Fastlock can be used to switch in a wider loop bandwidth when the PLL is changing frequencies, 

and then a narrower one when the frequency is closed to the final value.  Aside from this 

application, it can be also used in situations where there are multiple modes that need a drastically 

different loop bandwidth.  In this case, the loop gain constant changes too much to not switch in 

any additional components.   Switching in a Fastlock resistor in parallel with R2 serves as a quick 

remedy.  In this case, the loop bandwidth may change, but the loop filter stays optimized.  Fastlock 

has been discussed in depth in another chapter. 

 

The Full Switched Mode Filter 

For this case, a new filter is switched in parallel with the old filter.  The most common strategy for 

using this method is to have one filter with a faster lock time requirement, and one with a slower 

lock time requirement.  For the mode with fast lock time, the other filter is not switched in.  For 

the mode with the slower lock time and better spectral performance, a second loop filter is switched 

in with components that swamp out the other components.  

 

R3

R2

C2

 

C1 C3

KPD

R2p

Kvco

 s

R2s

Fastlock

Output

C2sC1s

 

Figure 44.1  Full Switched Loop Filter 

 

The strategy with this loop filter design is first to design C1, C2, R2, and R2p (Fastlock Resistor) 

for the mode with fast switching speed.  The impact of all the other components is negligible 

because the switch to ground is off.  The components C3, C1s, C2s, and R2s add in parallel to R3 

in order to reduce the resistor noise due to this component.  In the mode with the narrower loop 

bandwidth, the switch to ground is on and R3 and C3 form the extra pole for the filter.   

Once the filter is designed for the fast mode, then another traditional filter is designed for the slow 

switching mode.  Denote these components with the ‘d’ suffix.  So, R2d is the desired component 

value in slow mode for a non-switched filter.    When the switch is grounded, C1 and C1s add 

together.  The transfer function formed by C2, C2s, R2, and R2s is as follows: 

 



   424         Switched and Multimode Loop Filter Design 

                              

𝑍(𝑠) =  
1 + 𝑠 ∙ (𝐶2 ∙ 𝑅2 + 𝐶2𝑠 ∙ 𝑅2𝑠) + 𝑠2 ∙ 𝐶2 ∙ 𝐶2𝑠 ∙ 𝑅2 ∙ 𝑅2𝑠

𝑠 ∙ (𝐶2 + 𝐶2𝑠) + 𝑠2 ∙ 𝐶2 ∙ 𝐶2𝑠 ∙ (𝑅2 +  𝑅2𝑠)
 (44.2)  

 

The nunmerator implies that the final transfer function will have a factor of s2.  Because of this, 

there is no hope of achieving the exact transfer function.  The first term in the denominator implies 

that C2 and C2s add to make C2d.  For R2, the middle term should resemble R2d∙C2d.  Now the 

C2∙R2 makes the calculated value for R2s smaller, but the s2 term would make this smaller.  

Because these are both second order effects and they roughly cancel out, they can both be 

neglected.  In practice, this approximation seems to work reasonably well.  As for R3s and C3s, all 

the calculations have been made so far to make the second order part of the loop filter as close as 

possible, so it makes sense to make these equal to their design target values.  Applying all these 

concepts, the switched components can be solved for. 

 

𝐶1𝑠 = 𝐶1𝑑 − 𝐶1 (44.3)  

 

𝐶2𝑠 = 𝐶2𝑑 − 𝐶2 (44.4)  

 

𝐶3𝑠 = 𝐶3𝑑 (44.5)  

 

𝑅2𝑠 =   
𝑅2𝑑 ∙ 𝐶2𝑑

𝐶2𝑠
 (44.6)  

 

𝑅3𝑠 =  𝑅3𝑑 (44.7)  

 

Note that the way that these switched component values are calculated is by calculating what the 

equivalent impedance of the loop filter would be with the components switched together and then 

solving for the switched values.  For instance, capacitor C1 and C1s add to get C1d.  From this, it 

is easy to solve for C1s.  Some coarse approximations have been used, so there could definitely be 

some benefit to tweaking the components manually. 
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Example of a Full Switched Filter 

 

Symbol Units Fast Filter 
Ideal Slow 

Filter 

Switched 

Components 

for Slow Filter 

fOUT MHz 1930 to 1990 1392 (Fixed Frequency) 

fPD kHz 50 60 

KPD mA 1 4 

KVCO MHz/V 60 30 

N n/a 39200 23200 

BW kHz 10.0 2.0 1.9 

f Deg. 50.0 50.0 48.9 

 n/a 1.1 1.1 
 

T3/T1 % 0 50 

C1, C1d, C1s nF 0.58494 5.86096 5.27602 

C2, C2d, C2s nF 3.83824 91.17890 87.34066 

C3d, C3s nF  0.75962 0.75962 

R2, R2d, R2s kW 23.9181 2.56228 2.67488 

R2p kW 23.9181  

R3d, R3s kW  18.57557 18.57557 

Table 44.1 Full Switched Filter Example 

 

Conclusion 

Switched filters are useful in situations where the loop filter is to be used under two different 

conditions.  In some cases, it is not necessary to switch in additional components.  However, if the 

requirements of the loop filters are much different, then it might be necessary.  Also, there can be 

times when the requirements for two different modes may be different.  Usually, this means that 

there is one mode that has a faster lock time requirement, and another mode that has a more 

stringent spur requirement. 
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Chapter 45      Rounding Techniques for Loop Filter Components  

  

Introduction 

One real world issue that will come up when the component values are found is how to round them 

to standard component values.  The most natural method might be to individually round each 

component to the closest standard value, but there is a better way to get closer to the desired design 

parameters.  This chapter discusses standard component values and this improved method of 

rounding component values.   

 

EIA Standard Values and Common Component Stocking 

The EIA (Electronic Industries Association) standard divides each decade into a prescribed number 

of values per decade of 6 (E6), 12 (E12), 24 (E24), 48 (E48), 96 (E96), or 192 (E192) values per 

decade.  For practical purposes, it is common to stock only E12 values for resistors and capacitors.  

When the values start getting bigger, then sometimes only E6 values are stocked.  The common 

E24 and sub families of this are shown in the table below: 

 

  E6 E12 E24 

Values/Decade 6 12 24 

Theoretical Ratio 1.468 1.212 1.101 

Tolerance 20% 10% 5% 

V
a

lu
es

 

1 

1 
1 

1.1 

1.2 
1.2 

1.3 

1.5 

1.5 
1.5 

1.6 

1.8 
1.8 

2 

2.2 

2.2 
2.2 

2.4 

2.7 
2.7 

3 

3.3 

3.3 
3.3 

3.6 

3.9 
3.9 

4.3 

4.7 

4.7 
4.7 

5.1 

5.6 
5.6 

6.2 

6.8 

6.8 
6.8 

7.5 

8.2 
8.2 

9.1 

Table 45.1 Standard E24 and Smaller Values 
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Comparison of Rounding Methods 

Simple Rounding Method 

The simple method of rounding loop filter components is to simply round every component value 

to the closest standard value.  The advantages of this technique are that it is simple, independent 

of loop filter type, and the calculated component values will always be positive.   These advantages 

come at the cost the loop filter being farther off from the design target than necessary. 

 

Advanced Rounding Method 

The advanced rounding method involves choosing components in a sequential order in order to try 

to get as close the design targets for the filter zero (T2) and loop filter coefficients (A0,A1,A2, and 

A3).  After each component is chosen, the next target value is chosen to try to make the loop filter 

coefficients as close as possible.  For notational purposes, an “a” will be added to each component 

value to indicate the rounded value.  For instance, “C1” is the ideal value and “C1a” is the rounded 

value.  The function “Round” is introduced to mean to round to a standard value.  There are 

multiple ways to approach this problem, but one method that makes a reasonable trade-off between 

accuracy and complexity is as follows: 

 

1.  Choose loop filter component C2a as close to C2 as possible.  The reasoning for choosing 

C2 first is that this dominates the filter coefficient A0. 

 

𝐶2𝑎 = 𝑅𝑜𝑢𝑛𝑑{  𝐶2  } (45.1)  

 

2.  Choose loop filter component R2a to make T2 as close to value as possible.  In other words, 

choose R2a to be as close to T2/C2a as possible. 

 

𝑅2𝑎 = 𝑅𝑜𝑢𝑛𝑑 {  
𝐶2 ∙ 𝑅2

𝐶2𝑎
  } (45.2)  

 

3. The method differs based on filter order and filter type, but ideal strategy would be to get 

the ratio of A1/A0 as close to the design target as possible, as this would be the sum of the 

poles.  For the second order filter, there is a nice formula for this.  For higher order filters, 

other decision criteria are used to simplify the calculations. 

 

These steps apply to the passive filter.  In the case of the active filter, the first two steps are the 

same, but the third step will involve choosing the components to get the poles T1, T3, and T4 as 

close to the target values as possible.  In general, the added isolation from the op-amp simplifies 

the calculations.  
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Rounding Methods for the Second Order Filter 

For the second order method, the steps are easy and never lead to negative component values.    The 

value that gets the ratio of A1/A0 as close to the design target is as follows. 

 

𝐶1𝑎 = 𝑅𝑜𝑢𝑛𝑑 { 
𝐶1

𝐶2
∙ 𝐶2𝑎} (45.3)  

 

Parameter Units 
Ideal 

Components 

Simple 

 Method 

Advanced 

Method 

KPD mA 1 

KVCO MHz/V 35 

N n/a 150 

BW kHz 20 20.95 21.72 

f Degrees 50 48.10 51.02 

 n/a 1 1.27 1.17 

C2 nF 35.21872 33 33 

R2 kW 0.6208 0.68 0.68 

C1/C2 n/a 0.1527 0.1697 0.1424 

C1 nF 5.37803 5.6 4.7 

Table 45.2 Advanced Rounding Method Example for a Second Order Filter Assuming Resistor 

and Capacitor in Steps of 10% 

 

Table 45.2  shows an example of rounding components to the nearest 10% value.   In this case, 

even though components do not come with a 10% tolerance, it is a very common practice to order 

5% components and stock every other value.  The effect of this is the same as having standard 10% 

values.  These values are a power of ten multiplied by one of the following values:  1.0, 1.2, 1.5, 

1.8, 2.2, 2.7, 3.3, 3.9, 4.7, 5.6, 6.8, or 8.2.  For the case of the simple method, the components were 

simply rounded to the nearest value.   

 

Rounding Methods for the Third order Filter 

Advanced Method 

The components C2a and R2a are found as usual. 

 

𝐶2𝑎 = 𝑅𝑜𝑢𝑛𝑑{ 𝐶2}  (45.4)  

𝑅2𝑎 = 𝑅𝑜𝑢𝑛𝑑 { 
𝑇2

𝐶2𝑎
}  (45.5)  
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The next step involves finding C1a then C3a.  It is possible, however unlikely, that the rounding 

error could cause C3a to be negative.  If this is the case, then the best approach is to just find C1a, 

C3a, and R3a using the simple rounding method.  The first step is to find the product of R3 and C3 

(R3tC3) as it would be calculated from C2a and R2a.  The derivation for this is in the appendix. 

 

𝐶3𝑡𝑅3 =
𝐴1 − 𝐶2𝑎 ∙ 𝑅2𝑎 ∙ (𝐴0 − 𝐶2𝑎) −

𝐴2
𝐶2𝑎 ∙ 𝑅2𝑎 

𝐶2𝑎
  (45.6)  

 

Once this is known, C1a, C3a, and R3a can be found. 

 

𝐶1𝑎 = 𝑅𝑜𝑢𝑛𝑑 {
𝐴1 

𝐶3𝑡𝑅3 ∙ 𝐶2𝑎 ∙ 𝑅2𝑎
}  (45.7)  

 

𝐶3𝑎 = 𝑅𝑜𝑢𝑛𝑑{𝐴0 − 𝐶1𝑎 − 𝐶2𝑎}  (45.8)  

 

𝑅3𝑎 = 𝑅𝑜𝑢𝑛𝑑 {
𝐶3𝑡𝑅3

𝐶3𝑎
}  (45.9)  

 

Parameter Units 
Ideal 

Components 

Simple 

 Method 

Advanced 

Method 

KPD mA 1 

KVCO MHz/V 35 

N n/a 150 

BW kHz 20 19.58 19.86 

f Degrees 50 49.69 50.19 

 n/a 1 0.96 0.96 

T3/T1 % 20 19.56 20.9 

C2 nF 38.28894 39 39 

R2 kW 0.57741 0.56 0.56 

C3tR3 s 1.08649 × 10-6 1.23 × 10-6 1.51539 × 10-6 

C1 nF 1.97892 1.8 1.5 

C3 nF 1.44671 1.5 1.2 

R3 kW 0.75101 0.82 1.2 

Table 45.3 Advanced Rounding Method Example for a Third Order Filter Assuming Resistor and 

Capacitor Steps of 10% 
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Rounding Methods for Fourth Order Filter 

Recall the equations for the fourth order filter passive filter coefficients. 

 

𝐴0 = 𝐶1 +  𝐶2 +  𝐶3 +  𝐶4 (45.10)  

 

𝐴1 = 𝐶2 ∙ 𝑅2 ∙ (𝐶1 + 𝐶3 + 𝐶4) +  𝑅3 ∙ (𝐶1 + 𝐶2) ∙ (𝐶3 + 𝐶4) 

+𝐶4 ∙ 𝑅4 ∙ (𝐶1 + 𝐶2 + 𝐶3) 
(45.11)  

 

𝐴2 = C1∙C2∙R2∙R3∙(C3+C4) 

+ C4∙R4∙(C2∙C3∙R3+C1∙C3∙R3+C1∙C2∙R2+C2∙C3∙R2) 
(45.12)  

 

𝐴3 =  𝐶1 ∙ 𝐶2 ∙ 𝐶3 ∙ 𝐶4 ∙ 𝑅2 ∙ 𝑅3 ∙ 𝑅4 (45.13)  

 

The components C2a and R2a are found as usual. 

 

𝐶2𝑎 = 𝑅𝑜𝑢𝑛𝑑{ 𝐶2}  (45.14)  

 

𝑅2𝑎 = 𝑅𝑜𝑢𝑛𝑑 { 
𝑇2

𝐶2𝑎
}  (45.15)  

 

As the equations can be complicated, a fair compromise is to use simple rounding for C3, C4, and 

R4. 

𝐶3𝑎 = 𝑅𝑜𝑢𝑛𝑑{ 𝐶3}  (45.16)  

 

𝐶4𝑎 = 𝑅𝑜𝑢𝑛𝑑{ 𝐶4}  (45.17)  

 

𝑅4𝑎 = 𝑅𝑜𝑢𝑛𝑑{ 𝑅4}  (45.18)  

 

Once these are known, C1a can be easily solved for using (45.10). 

 

𝐶1𝑎 = 𝑅𝑜𝑢𝑛𝑑{ 𝐴0 − 𝐶2𝑎 − 𝐶3𝑎 − 𝐶4𝑎}  (45.19)  
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R3a can be solved for by rearranging (45.11). 

 

𝑅3𝑎 =  

𝑅𝑜𝑢𝑛𝑑 {
𝐴1 − 𝐶2𝑎 ∙ 𝑅2𝑎 ∙ (𝐶1𝑎 + 𝐶3𝑎 + 𝐶4𝑎) − 𝐶4𝑎 ∙ 𝑅4𝑎 ∙ (𝐶1𝑎 + 𝐶2𝑎 + 𝐶3𝑎)

(𝐶1𝑎 + 𝐶2𝑎) ∙ (𝐶3𝑎 + 𝐶4𝑎)
} 

(45.20)  

  

Parameter Units 
Ideal 

Components 

Simple 

 Method 

Advanced 

Method 

KPD mA 1 

KVCO MHz/V 35 

N n/a 150 

BW kHz 20 19.83 19.78 

f Degrees 50 50.22 49.41 

 n/a 1 0.95 0.99 

3/1 % 20 20.91 20.78 

4/3 % 20 19.81 21.12 

C2 nF 38.98098 39 39 

R2 kW 0.56671 0.56 0.56 

C4 nF 1.04502 1 1 

R4 nF 0.73196 0.68 0.68 

C3 nF 0.38527 0.39 0.39 

C1 nF 1.38357 1.5 1.5 

R3 kW 0.45861 0.47 0.56 

Table 45.4 Fourth Order Passive Filter Example with Component Rounding 

 

With the advanced rounding method, maybe the values are closer, especially for Gamma, but it is 

very close. 

 

Conclusion 

One reality of loop filter design is dealing with standard component values.   The simple method 

is the most intuitive way and involves rounding each component to the closest standard value.  A 

better method is to round off components in a more systematic order to keep the loop filter 

coefficients as close to the desired value as possible.   Both methods were presented.   For the avid 

reader, one could come up with more sophisticated methods to try even harder to keep the loop 

filter coefficients the same, but these do not always perform that much closer to the design values, 

and they also introduce complexity and the possibility of the method yielding negative component 

values.  If this ever happens with one of these more sophisticated methods, then revert to the simple 

method.  
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Appendix   Derivations for Filter Rounding Methods 

Method for C2 and R2 

This section derives the equations for rounding for the 2nd, 3rd, and 4th order filters.  This assumes 

passive filters, but similar logic can be used to derive equations for active filters.  Regardless of 

the filter order or if it is active or passive, T2, is always calculated the same. 

 

𝑇2 = 𝐶2 ∙ 𝑅2 (45.21)  

 

For every technique, we choose C2a to be as close to C2 as possible.  Therefore: 

 

𝑅2𝑎 = 𝑅𝑜𝑢𝑛𝑑 {  
𝐶2 ∙ 𝑅2

𝐶2𝑎
  } (45.22)  

Also recall that: 

𝐴1 = 𝐴0 ∙ (𝑇1 + 𝑇3 + 𝑇4) (45.23)  

 

In other words, by choosing the ratio of A1/A0 to be as close as possible to the design target, this 

gets the sum of the poles as close to the design target as possible. 

 

Second Order Loop Filter 

Recall the loop filter coefficients for a passive filter. 

𝐴0 = 𝐶1 + 𝐶2 (45.24)  

𝐴1 = 𝐶1 ∙ 𝐶2 ∙ 𝑅2 (45.25)  

 

The ratio of these is as follows: 

𝐴1

𝐴0
=
𝐶1 ∙ 𝐶2 ∙ 𝑅2

𝐶1 + 𝐶2
=  

𝑅2

(𝐶1 𝐶2⁄ ) +
1

(𝐶1 𝐶2⁄ )

 
(45.26)  

 

In other words, if one chooses C1 to make C1a/C2a as close to the design target of C1/C2, then 

this will get the pole, T2, as close to target value as possible.  This yields the following equation 

for C1a. 

 

𝐶1𝑎 = 𝑅𝑜𝑢𝑛𝑑 { 
𝐶1

𝐶2
∙ 𝐶2𝑎} (45.27)  
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Third Order Loop Filter 

Recall the loop filter coefficients for a passive filter. 

 

𝐴0 = 𝐶1 + 𝐶2 + 𝐶3 (45.28)  

𝐴1 = 𝐶2 ∙ 𝑅2 ∙ (𝐶1 + 𝐶3) +  𝐶3 ∙ 𝑅3 ∙ (𝐶1 + 𝐶2)  (45.29)  

𝐴1 = 𝐶1 ∙ 𝐶2 ∙ 𝐶3 ∙ 𝑅2 ∙ 𝑅3 (45.30)  

 

As C2 and R2 are known, (45.28) can be used to find the sum of C1 and R3 and (45.30) can be 

used to find the product of C1, C3, and R3.  Substituting this into (45.29), using the known values 

of C2a and R2a, and simplifying yields the following result.   

 

𝐶3𝑡𝑅3 =
𝐴1 − 𝐶2𝑎 ∙ 𝑅2𝑎 ∙ (𝐴0 − 𝐶2𝑎) −

𝐴2
𝐶2𝑎 ∙ 𝑅2𝑎 

𝐶2
  (45.31)  

 

Substitution into (45.30) yields the expression for C1. 

 

𝐶1𝑎 = 𝑅𝑜𝑢𝑛𝑑 {
𝐴1 

𝐶3𝑡𝑅3 ∙ 𝐶2𝑎 ∙ 𝑅2𝑎
}  (45.32)  

 

C3 can be found through (45.28). 

 

𝐶3𝑎 = 𝑅𝑜𝑢𝑛𝑑{𝐴0 − 𝐶1𝑎 − 𝐶2𝑎}  (45.33)  

 

R3 is found by simple division. 

 

𝑅3𝑎 = 𝑅𝑜𝑢𝑛𝑑 {
𝐶3𝑡𝑅3

𝐶3𝑎
}  (45.34)  
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Chapter 46      PLL Lock Detect 

 

Introduction 

The ability for a PLL to reliably indicate when it is in lock is critical for many applications.  

An ideal lock detect circuit gives a high indication when the PLL is locked and a low 

indication when the PLL is unlocked.   Although this may seem like a simple task, the problem 

of a PLL determining when it is in lock can be complicated.  Lock detect has several different 

types and has evolved over the years.  The four lock detect methods discussed in this chapter 

will be nicknamed Analog, Digital, Vtune, and Calibration Status. 

 

Type Output Lock Detect Basis 

Analog Pulse width modulated signal. Charge pump on time 

Digital Logic high or low Error at phase detector 

Vtune Logic High/Low VCO tuning voltage 

Calibration Status Logic High/Low VCO calibration finished 

Table 46.1 Lock Detect Types 

Analog Lock Detect 

How it works 

The first type of lock detect to come along was the analog lock detect.  This works by creating 

a signal that is mostly high with a series of low pulses with a period corresponding to when 

the charge pump is coming on.  When the PLL goes out of lock, the width of these pulses gets 

wider.    

 

 

Table 46.2 Typical Lock Detect Pin Output for Analog Lock Detect  
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The user creates a circuit that integrates the width of these negative pulses and converts this 

signal into a logic low or high signal.  The construction and simulation of this circuit depends 

on the width of these low pulses in both the locked and unlocked condition and is discussed 

in the appendix.  The information concerning the PLL in or out of the locked state is in no 

individual pulse, but rather in the average pulse width. 

 

Estimating the Pulse Width of the Analog Lock Detect Circuit 

Although the pulses can sometimes be sort of triangular due to the turn on times of transistor, 

they can be approximated as rectangular for the sake of simplicity.   The width of these pulses 

varies between the locked and unlocked conditions.   

In the locked condition, the width of the pulses is application specific and can also vary with 

the PLL being used.  One example of these pulses in locked condition is the LMX2485 family 

which has pulses on the order of 25 to 70 ns.   The width of these pulses can vary based on 

many factors.  One such factor is the charge pump current; for higher charge pump currents, 

the pulse width tends to be narrower.  They can also vary over temperature, charge pump 

mismatch, charge pump leakage, and process. 

When the PLL is in the unlocked state, the width of the pulses can vary based on the situation.  

First consider the situation where the PLL is trying to force the VCO to a frequency that it 

cannot go.  In this case, N and R divider outputs will be different frequency and therefore have 

a rolling phase.  Imagine this first as the divider outputs starting in phase.  In this case, the 

width of the first negative pulse would simply be just the difference in the periods of the two 

counter outputs.    The width at each phase detector period will increase until the phase error 

exceeds one full cycle and then it resets.  In this case, the average low period of the lock detect 

circuit would be half the phase detector period.   The other scenario for the PLL in the 

unlocked state would be when the PLL is able to track the VCO frequency.  In this case, the 

first pulse width would again be the difference of the periods of the N and R divider outputs.  

The width of the next pulse might be similar if the PLL was able to track it.  So in general, 

one can assume the following about the low time of the lock detect signal. 

 

𝑇𝐿𝑜𝑤𝑈𝑛𝑙𝑜𝑐𝑘 =

{
 
 

 
          

1

2 ∙ 𝑓𝑃𝐷
                𝑃𝐿𝐿 𝑁𝑜𝑡 𝑇𝑟𝑎𝑐𝑘𝑖𝑛𝑔 𝑉𝐶𝑂

|
1

𝑓𝑃𝐷
− 

𝑁

𝑓𝑉𝐶𝑂
|         𝑃𝐿𝐿 𝑖𝑠 𝑇𝑟𝑎𝑐𝑘𝑖𝑛𝑔 𝑉𝐶𝑂

          

 

(46.1)  

 

(46.1) is based on somewhat bold assumptions and is intended to give only a rough 

approximation; it is always best to verify the pulse width through direct measurement. 
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Advantages and Disadvantages 

The key disadvantage of analog lock detect is that it requires external circuitry to convert the 

pulse stream to a logic low or high.  If all that is desired is a circuit to determine if the VCO 

is slammed against the rail, then this circuit is not too difficult.  However, if it is desired to 

have something that is a little more sensitive, then the construction of this circuit is sort of a 

science experiment as it depends on comparing the width of these negative pulses when the 

device is out of lock which is specific to the family of device.   

The advantages of the analog lock detect is that the user can tune it to just what they want, it 

is hard to fool by abruptly removing the input reference, and it has no problems with higher 

phase detector frequencies or fractional modulation. 

 

Digital Lock Detect 

Overview 

The undesired requirement of extra components and challenges with pulse width estimation 

for the analog lock detect were likely motivators for invention of digital lock detect.  Digital 

lock detect works by looking at the phase error at the phase detector at each phase detector 

cycle output of the R divider as shown in the flowchart below. 

Phase Error < 

For n fPD cycles

Phase Error > d

For m fPD cycles

Start

Lock=Low

Lock=High

Y
e

s

No Yes

No

 

Figure 46.1  Digital Lock Detect Flowchart 
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The circuit starts with indicating the unlocked condition.  After there have been n phase 

detector cycles with less than a phase error of , then the circuit indicates a locked condition.   

Once the circuit is in the locked condition, it will stay in that state until there are m phase 

detector cycles with a phase error greater than d.  For example, the LMX2306 was one of the 

first PLLs to have this kind of digital lock detect.  This PLL would indicate a locked condition 

when there were 3 to 5 (user programmable) phase detector cycles with a phase error of less 

than 15 ns.  Then once the PLL was locked, it would require a single phase detector cycle with 

an error of greater than 30 ns to cause the circuit to indicate an unlocked condition. 

As phase detector frequencies became higher, the values for  and d became smaller to 

accommodate this.  For instance, if the phase detector frequency is 200 MHz, then this works 

out to a period of 5 ns, so clearly  would need to be much less than this.   With the rise of 

fractional N PLLs, this presented more challenges as the fractional modulation would 

introduce errors at the phase detector.  In this case, it started to become necessary to make 

m>1 to accommodate this as done in such devices as the LMX2581. 

 

Digital Lock Detect Issues with Loss of Reference and OSCin Pin Self-Oscillation 

The nemesis of digital lock detect has always been detecting the condition when the input 

reference goes away.  The reason why this is problematic is that the input reference drives the 

phase detector frequency, which is the state machine for the lock detect circuit.  If this state 

machine clock goes away, then the PLL could be initially in a locked condition and then the 

input frequency could abruptly go away and then the lock detect circuit improperly indicates 

that the PLL is locked. 

The additional factor that has caused tremendous confusion with this loss of reference 

condition is the potential self-oscillation of the OSCin pin.  When there is no input signal 

present at the OSCin pin, then it can often self-oscillate.  In this case, the state machine clock 

and the digital lock detect will properly detect the loss of the input frequency.   As self-

oscillation property varies over devices, process, voltage, and temperature, it can distract away 

from the fundamental issue of not having an input reference. 

 

Vtune Lock Detect 

As the challenges of loss of input reference, higher phase detector frequencies, and fractional 

PLLs put more challenges on the digital lock detect, another form of lock detect came along.  

This Vtune lock detect simply measures the voltage at the VCO input (Vtune) and gives a 

logic high or low indication based on whether it is within a certain range or not.  This lock 

detect is simple and works for the loss of reference condition but tends to be less sensitive.    

Sometimes this can be used in addition to analog lock detect for a more reliable lock detect 

indication. 
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Calibration Status Lock Detect 

Yet another type of lock detect that has come about is the calibration status style.  For this 

lock detect, the circuit indicates low when the VCO is calibrating and then indicates high 

when the calibration is finished.  A delay can be added to this to allow for the analog settling 

time of the PLL.  This lock detect is very simple, but it will not correctly indicate an unlock 

condition if the PLL ever does go out of lock after the calibration has finished.  Aside from 

giving a lock detect indication, the calibration status lock detect can also sometimes be used 

as a diagnostic to measure the VCO digital calibration time in the case of integrated VCOs. 

 

Conclusion 

The problem of getting the PLL to properly tell when it is or is not in a locked condition is a 

key function.   Although it seems like a simple problem, it has had its challenges and lock 

detect circuits have evolved through the years. 
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Appendix: Construction and Simulation of Analog Lock Detect Circuit 

 

Lock Detect Circuit Construction 

The basic strategy for the lock detect circuit is to integrate over some number of phase detector 

periods in order to accumulate a DC value which can then be compared to a threshold value.  

This comparison can be made with a comparator or transistor.  In cases where only a gross 

lock detect is needed, the lock detect circuit output can be sent directly to the input logic gate, 

provided the difference in the voltage level produced between the in lock and out of lock 

conditions is large enough to be recognized as a high or low.  Some microprocessors also have 

A/D input pins that can also be used for this function.   

When a more sensitive lock detect circuit is needed, it may be necessary to use unbalanced 

time constants to maximize sensitivity as the average DC contributions of the pulses are small 

relative to the rest of the time.  The recommended circuit is shown in Figure 46.2 .  Note that 

there are some PLLs in which the lock detect output is open drain, which eliminates the need 

for the diode and increases the sensitivity of the circuit by making VD = 0.  There are still other 

PLLs with digital lock detect, that eliminate the need for a lock detect circuit entirely. 

  

R1Lock

Detect

Pin

R2

C

VCC

VOut

- VD +

 

Figure 46.2  Lock Detect Circuit 

 

Theoretical Operation of the Lock Detect Circuit 

Consider the event when the lock detect pin first goes to its low voltage.  The voltage drop 

across the diode is VD.  The diode will conduct, and if R2 >> R1 then the following holds: 

 

𝑉𝑜𝑢𝑡 = −𝑅1 ∙ 𝐶 ∙
𝑑𝑉𝑜𝑢𝑡
𝑑𝑡

          (46.2)  
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The main interest is the amount that the voltage Vout changes during the period that the lock 

detect pin is low. To simplify the mathematics, it is easiest to discretize the problem.  The 

size of the discrete time step is TLow, which is the time which the lock detect pin stays low.  

This applies to both cases when the PLL is out of lock and when it is in lock.    The 

following definitions can be used to convert the differential equation into a difference 

equation: 

 

𝑉𝑛 = 𝑉𝑜𝑢𝑡(0)          (46.3)  

 

 

𝑉𝑛+1 = 𝑉𝑜𝑢𝑡(𝑇𝐿𝑜𝑤)          (46.4)  

 

The above difference equations have the following solution: 

 

𝑉𝑛+1 = 𝑉𝐷 + (𝑉𝑛 − 𝑉𝐷) ∙ 𝛽                 (46.5)  

 

 

𝛽 = 𝑒(
−𝑇𝐿𝑜𝑤
𝑅1∙𝐶

)          (46.6)  

 

When the lock detect output goes high, then the diode will not conduct, and the capacitor will 

charge through the resistor R2.  In an analogous way that was done for the case of the lock 

detect pin state being low, the results can also be derived for the case when the lock detect pin 

is high.  In this case, THigh represents the time period that the lock detect pin stays high. 

 

𝑉𝑛+1 = 𝑉𝐶𝐶 + (𝑉𝑛 − 𝑉𝐶𝐶) ∙ 𝛼          (46.7)  

 

𝛼 = 𝑒
(
−𝑇𝐻𝑖𝑔ℎ
𝑅2∙𝐶

)
          (46.8)  

 

Now if one considers the two cases for Vn, then a general expression can be written for Vn.  

For sufficiently large n, the series will alternate between two steady state values.  Call these 

two values VHigh and VLow.  These values can be solved for by realizing that the initial voltage 

when the lock detect pin just goes low will be VHigh and the final voltage will be VLow.  Also, 

the initial voltage when the lock detect pin just goes high will be VLow and the final voltage 

will be VHigh.   
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This creates a system of two equations and two unknowns. 

𝑉𝐿𝑜𝑤 = 𝑉𝐷  + (𝑉𝐻𝑖𝑔ℎ  −  𝑉𝐷 ) ∙ 𝛽     (46.9)  

𝑉𝐻𝑖𝑔ℎ = 𝑉𝐶𝐶  + (𝑉𝐿𝑜𝑤  −  𝑉𝐶𝐶  ) ∙ 𝛼            (46.10)  

 

This system of equations has the following solution: 

𝑉𝐿𝑜𝑤 = 𝑉𝐶𝐶  +
(1 −  𝛽 ) ∙ (𝑉𝐷  − 𝑉𝐶𝐶  )

1 − 𝛼 ∙ 𝛽
     (46.11)  

𝑉𝐻𝑖𝑔ℎ = 𝑉𝐷  +
(1 −  𝛼 ) ∙ (𝑉𝐶𝐶  −  𝑉𝐷 )

1 − 𝛼 ∙ 𝛽
     (46.12)  

 

Lock Detect Circuit Design 

The above expressions for VLow and VHigh show what two values the voltage will oscillate 

between, once the component values are known.   This is based on the assumption that THigh 

and TLow do not change.  For the purposes of designing a lock detect circuit, these parameters 

actually need to be considered in two cases.  One case is when the PLL is locked, and the 

other is when the PLL is unlocked with the minimum detectable frequency error.  For design 

of the circuit, the following information is needed.   

VCC      This is the voltage supply to the lock detect circuit. 

VD This is the voltage drop across the diode.  It is zero for an open drain lock detect 

output, since the diode is omitted in this case. 

VHighUnlock   This is the highest voltage the circuit should achieve when the PLL is unlocked.  

Therefore, this is the low trip point.  Below this voltage, output is considered 

to be low.  It may turn out that this low trip point is not really as low as a 

voltage as desired, however, it must satisfy the constraint that VHighUnock < 

VLowLock.  If the circuit is intended to be very sensitive, this may only be a few 

hundred millivolts below VLowLock.  In this case, a comparator or low speed A/D 

converter could be used to interpret this voltage as an indication of lock or 

unlock. 

VLowUnlock This is the lowest voltage the circuit should be when the PLL is unlocked.  This 

must be less than VHighUnlock.  The lower this is chosen, the more sensitive the 

circuit will be, but the noisier the lock detect output will be as well.  For 

maximum sensitivity, choose this equal to VD.   

THighUnlock This is the time the lock detect output is high for the PLL in the unlocked state. 

TLowUnlock This is the width of the LD pulses that are to be detected in the unlocked 

condition. 

C This is the value of the capacitor in the circuit that can arbitrarily be chosen. 

The parameter  depends on the parameters THigh.  Although this parameter does change 
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slightly between the locked and unlocked conditions, the change is small enough to assume 

that this parameter is a constant.  Using the expressions for VHigh and VLow in equations (46.11) 

and (46.12), the following equations can be derived. 

 

𝛼 =
𝑉𝐶𝐶  −  𝑉𝐻𝑖𝑔ℎ𝑈𝑛𝑙𝑜𝑐𝑘 

𝑉𝐶𝐶  −  𝑉𝐿𝑜𝑤𝑈𝑛𝑙𝑜𝑐𝑘
     (46.13)  

 

𝛽 =
𝑉𝐿𝑜𝑤𝑈𝑛𝑙𝑜𝑐𝑘  −  𝑉𝐷 

𝑉𝐻𝑖𝑔ℎ𝑈𝑛𝑙𝑜𝑐𝑘  −  𝑉𝐷
     (46.14)  

 

Finally, the components can be solved for.  To do so, the capacitor, C, can be chosen 

arbitrarily.  Once C is known, the other components can also be found.  

 

𝑅1 =
−𝑇𝐿𝑜𝑤𝑈𝑛𝑙𝑜𝑐𝑘 

𝐶 ∙ ln (𝛽)
     (46.15)  

𝑅2 =
−𝑇𝐻𝑖𝑔ℎ𝑈𝑛𝑙𝑜𝑐𝑘 

𝐶 ∙ ln (𝛼)
    (46.16)  

 

 

Parameter Value Units 

VCC 4.1 Volts 

VD 0.7 Volts 

VHighUnlock   2.1 Volts 

VLowUnlock 2 Volts 

THighUnlock 945 ns 

TLowUnlock 55 ns 

C 680 pF 

Table 46.3 Specified Parameters 

 

 

Parameter Value Units 

 0.9524 
n/a  

 0.9286 

R1 1.0914 kW 

R2 28.4833 kW 

Table 46.4 Calculated Results 
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Simulation 

After the design is done, it is necessary to assure that the lowest voltage in the locked state 

(VLowLocked) is higher than the highest voltage unlocked condition (VHighUnlocked).  For the circuit 

specified in Table 46.3  and Table 46.4 , the results are given.  The simulation shows that in 

twenty reference cycles, the circuit gets reasonably close to its final steady state values.  When 

the PLL is in lock, the lock detect circuit output voltage will not go below 2.54 Volts; in the 

unlocked state, the output voltage will not go above 2.10 Volts.  This may not seem like much 

voltage difference, but this is because this circuit is extremely sensitive.  If one was to use a 

pulse width of 100 ns out of lock, then this voltage difference would be much greater.  

In practice, is necessary to include a lot of margin for error, since it is very difficult to get an 

accurate idea of the width of the negative pulses from the lock detect pin.  It was also assumed 

that these pulses were square and of constant period, which may be a rough assumption.  

Furthermore, as shown in Figure 46.3 , it does take time for the system to settle down to its 

final state.  Although not directly stated, the phase detector frequency can be inferred to be 1 

MHz from the low and high times. 

 

Calculated Parameters 

Voltages Constants 

VLowLocked 2.6774 

Volts 

 0.9524 

n/a VHighUnlocked 2.1000 Unlocked 0.9286 

VLowUnlocked 2.0000 Locked 0.9669 

Table 46.5 Calculated Final Voltages and Constants 

 

 

Iteration VOutHigh VOutLow 

0 2.5000 2.3714 

1 2.4537 2.3285 

2 2.4128 2.2905 

3 2.3767 2.2569 

4 2.3447 2.2272 

5 2.3164 2.2009 

6 2.2913 2.1777 

7 2.2692 2.1571 

8 2.2496 2.1390 

9 2.2323 2.1229 

10 2.2170 2.1087 

20 2.1342 2.0318 

30 2.1100 2.0093 

40 2.1029 2.0027 

50 2.1009 2.0008 

Table 46.6   Typical Lock Detect Circuit Simulation for a Starting Voltage of 2.5 Volts 
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Figure 46.3  Typical Lock Detect Circuit Simulation for a Starting Voltage of 2.5 Volts 

 

 

Parting Thoughts on Lock Detect Circuits 

It is necessary for the designer to have some idea how much the width of the lock detect pulses 

are changing between the locked and unlocked condition.  Although a formula for a rough 

estimate was given, it really is something that should be measured as well.  As it is not really 

true that these pulses are rectangular in shape along with other assumptions, these formulae 

should be taken as a guideline and not the final design.  

There will be ripple on the output of this circuit and the low and high signals may or may not 

be far enough apart for whatever input device is using the lock detect information.  Filtering 

can reduce the ripple, and a comparator can deal with the issue if these two voltages are too 

close.  Some microcontrollers also have low speed A/D inputs that can also deal with this 

issue. 

The example presented is actually a very sensitive lock detect circuit that can detect an error 

kilohertz off.  If the out of lock indication is much greater than this, then the low and high 

voltages from the circuit to indicate lock and unlock are more separated. 
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Chapter 47      Impedance Matching Issues and Techniques for PLLs 

 

Introduction 

The PLL can have up to two inputs for a signal to drive it.  These would be the input reference 

pin (OSCin) and the VCO frequency input pin (Fin).  The input impedance of neither of these 

pins is even close to 50 W, and this has caused some confusion regarding what circuit is best 

for matching.   Improper drive levels, low slew rates, or poor matching at these pins can cause 

issues with phase noise, spurs, or even the ability of the PLL to lock.  This chapter discusses 

some general matching principles and then different methods for matching at these pins.  

 

General Transmission Line Theory 

Trace Characteristic Impedance Calculation 

The characteristic impedance of any microstrip trace on a PCB board is determined by the 

width of the trace, W, the height of the trace above the ground plane, H, and the relative 

dielectric constant, r, of the material used for the PCB board.  The reader should be careful 

not to confuse the characteristic impedance of a microstrip line with the input impedance of 

the PLL or the output impedance of the VCO; these things are all different.  

Ground

W

H

 

Figure 47.1  Microstrip Trace on a PCB 

 

The precise calculation of the trace impedance is rather involved.  However, it is a reasonable 

approximation to say that the trace impedance is independent of frequency and approximate 

with the following formula from the first reference: 

𝑍0 = √
𝐿

𝐶
=  

87

√𝜀𝑟 + 1.41
∙ 𝑙𝑛 (7.5 ∙

𝐻

𝑊
) (47.1)  
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In this formula, L represents the inductance per unit length and C represents the capacitance 

per unit length.  This formula can also be rearranged in order to determine what ratio of height 

to width is necessary to produce the desired impedance: 

 

𝑊

𝐻
= 

7.5

𝑒𝑥𝑝 (
𝑍0 ∙ √𝜀𝑟 + 1.41

87 )

 
(47.2)  

 

Two common PCB board materials are FR4 and Rogers 4003 and the most desired impedance 

is 50 W yields.  For these common conditions, the width to height ratio can be easily calculated. 

 

Material r W/H  for Z0 = 50 W 

FR4 4 2 

Rogers 4003 3.38 2.1 

Table 47.1 W/H Ratio for Various Materials 

 

In other words, if the thickness from the top layer to the ground plane is 10 mils (thousandths 

of an inch) and one wants a 50 W  trace on an FR4 board, then the width of the trace should 

be 20 mils.  There are many online calculators for microstrip impedance, such as the first 

reference presented that give more exact calculations.   

 

Reflection Coefficient 

When an AC signal encounters a discontinuity in impedance, then part of the signal will be 

transmitted and part of it will be reflected.  The case when the trace and load have mismatched 

impedances can be modeled as shown in the following figure. 

50W

Source Trace

Z0

R
 +

 j∙ X

L
o

a
d

 

Figure 47.2  Transmission Line Model 
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If the load impedance does not match that of the trace, there will be a reflected wave.  The 

amplitude of the voltage of the reflected wave will be as follows. 

 

Γ =  
𝑍0 − (𝑅 + 𝑋)

𝑍0 + (𝑅 + 𝑋)
  =  

𝑟𝑒𝑓𝑙𝑒𝑐𝑡𝑒𝑑 𝑣𝑜𝑙𝑡𝑎𝑔𝑒

𝑡𝑟𝑎𝑛𝑠𝑚𝑖𝑡𝑡𝑒𝑑 𝑣𝑜𝑙𝑡𝑎𝑔𝑒
 (47.3)  

 

Sometimes this is thought of in terms of power instead of voltage.  In this case the reflection 

coefficient is used and is derived as follows. 

 

𝜌 =  √
(𝑅 − 𝑍0)2 + 𝑋2

(𝑅 + 𝑍0)2 + 𝑋2
  =  √

𝑟𝑒𝑓𝑙𝑒𝑐𝑡𝑒𝑑 𝑝𝑜𝑤𝑒𝑟

𝑡𝑟𝑎𝑛𝑠𝑓𝑒𝑟𝑟𝑒𝑑 𝑝𝑜𝑤𝑒𝑟
 (47.4)  

 

The reflected wave will add constructively or destructively with the original signal to create 

the final result.  Consider the example in the following figure when the trace length is one 

wavelength and half of the voltage is reflected back towards the source. 

 

Figure 47.3  Example of Reflected Wave 
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In Figure 47.3 , the incident and reflected waves add destructively and the result has lower 

amplitude.  As the incident wave varies with time, then so will the reflected wave.  In this 

example, at ½ of a wavelength from the source, there will be no voltage at all for all time.  At 

a distance of ¼ of a wavelength, the result is half of the original voltage.   These results can 

vary based on how far the load is from the source and how much voltage is reflected back, but 

generally the AC voltage will vary as a function of where it is measured along the trace.  For 

a sufficiently long trace, one can measure the Voltage to Standing Wave Ratio (VSWR).   This 

can be calculated as a function of the trace impedance, Z0, and the load impedance, R + j∙X. 

𝑉𝑆𝑊𝑅 =  
1 + Γ

1 − Γ
 (47.5)  

 

As a rule of thumb, higher VSWR values are undesirable as they indicate a mismatch between 

the transmission line and the load.  Not also that if one assumes that the trace length is less 

than about 1/10th of a wavelength, then the transmission line effects will not be significant. 

 

Real World Component Effects at High Frequencies 

Capacitor Equivalent Series Resistance (ESR) and Self-Resonant Frequency (SRF) 

Real-world capacitors can be modeled as an ideal capacitance in series with an equivalent 

series resistance (ESR) and equivalent series inductance (ESL).   As a rule of thumb, the ESR 

and ESL tend to be larger for higher capacitor values.   They also vary with the capacitor type.  

For instance, tantalum capacitors tend to have much higher ESR than ceramic capacitors.    

 

 

ESRC ESL

 

Figure 47.4  High Frequency Capacitor Model 

 

The impedance of this real-world capacitor is as follows: 

 

𝑍(𝑓) =  𝐸𝑆𝑅 + 𝑗 ∙ (2𝜋 ∙ 𝑓 ∙ 𝐸𝑆𝐿 − 
1

2𝜋 ∙ 𝑓 ∙ 𝐶
)   (47.6)  

 

At low frequencies, the impedance of the ideal capacitor tends to dominate.  As the frequency 

increases, the impedance due to ESL begins to cancel out the impedance due to the capacitor.  

At the self-resonant frequency (SRF), these impedances perfectly cancel, and the impedance 

is just the ESR. 

𝑆𝑅𝐹 =   
1

2𝜋 ∙ √𝐸𝑆𝐿 ∙ 𝐶
   (47.7)  
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The following figure shows the magnitude of this impedance for a 100 nF capacitor with an 

ESR of 100 mW and an ESL of 2 nH. 

 

Figure 47.5  Capacitor Impedance Example 

 

In truth, this capacitor model is a little oversimplified, but it demonstrates some of the 

fundamental concepts.  If the goal is to make the magnitude of the impedance as small as 

possible, then a very rough rule of thumb might be to choose the capacitance such that the 

impedance at the desired frequency is on the order of 100 mW 

 

Resistors 

The real-world resistor has an equivalent parallel capacitance (EPC) and equivalent series 

inductance (ESL).  These values may vary drastically with resistor type, but a rough rule of 

thumb could be to assume that the EPC = 0.2 pF and ESL = 1 nH.   

  

R

EPC

 

ESL
 

Figure 47.6  High Frequency Model for a Resistor 

Applying these values to the above the model above for a 1 kW resistor gives the following 

resistance curve. 
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Figure 47.7  High Frequency Resistor Example 

 

One guideline to get from this model is not to believe high resistance values at high 

frequencies.  For instance, a real 1 kW resistor at 2 GHz operation is probably going to look a 

lot different than an ideal resistor under these conditions. 

 

Strategies for Dealing with High Frequency Behaviors 

For capacitors, the challenge may be that a low capacitance value is good at high frequency, 

but poor at low frequency.  One strategy could be to use a few capacitors of different values 

to create a good broadband low impedance.   For resistors, one can consider using different 

networks that have lower resistor values.   As a final strategy, consider using components 

specialized for high frequency, such as the few examples in the following table.   

 

 Component  Value Footprint Manufacturer Part Frequency 

Resistor 
50 ohm 402 Vishay FC0402E50R0BST1 20 GHz 
50 ohm 603 Vishay FC0603E50R0BTBST1  20 GHz 

Capacitor 
0.01 mF 402 ATC 520L103KT16T 16 GHz 

0.1 mF 402 ATC 550L104KCAT  40 GHz 

Table 47.2 Typical High Frequency Components 
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http://www.digikey.com/product-detail/en/vishay-thin-film/FC0603E50R0BTBST1/FC0603-50BFTR-ND/1769753
http://www.digikey.com/product-detail/en/american-technical-ceramics/520L103KT16T/1284-1540-1-ND/5768007
http://www.digikey.com/product-detail/en/american-technical-ceramics/550L104KCAT/1284-1000-1-ND/3905305
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Impedance Matching Strategies 

Keeping Traces Short and Adjusting Trace Width 

Impedance matching becomes an issue when the trace length is more than about 1/10th of a 

wavelength and the load impedance is mismatched from the characteristic impedance.  So if 

it is possible to make the trace length very short, then impedance matching is not an issue any 

more.  This also makes the design less susceptible to variations in the impedance of the load 

or discontinuities in the impedance caused by putting components in the trace.    

Another strategy is to adjust the trace width.  Although standard test equipment is 50 ohm 

input impedance, this does not mean that the design itself has to conform to this standard.  If 

the trace width is made to match the load impedance, then transmission line effects can be 

reduced.   

 

Eliminating the Imaginary Part of the Impedance 

As transmission line impedance is real, any imaginary component to the load impedance will 

make the reflection coefficient worse.  A strategy for coping with this is to put a series inductor 

or capacitor to cancel this impedance.  For instance, the high frequency input pin of a PLL 

typically has a large negative imaginary impedance.  A possible narrowband matching 

strategy would be to use a series inductor to cancel this.   This narrowband matching strategy 

might work, but then the inductor will have its own non-ideal high frequency behaviors.   

Many times, this pin requires the signal to be AC coupled, and this is done with a capacitor.  

One realization is that if the capacitor self-resonant frequency is exceeded, then this might be 

beneficial as the capacitor now starts to look like an inductor and this will cancel with the 

negative imaginary component of the load.  As a matter of fact, it is a common mistake to 

choose an AC coupling capacitor that is too small to avoid the self-resonant frequency only 

to have the capacitor impedance be too large.  This tends to attenuate the desired signal more 

than the harmonics. 

 

Narrowband Tuned Matching Circuits with Inductor and Capacitor 

50W
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 j∙ X
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Figure 47.8  Typical Impedance Matching Circuit  
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When the frequency of operation is not too wide, the impedances are well known, and the load 

is a pure resistance, a tuned circuit using an inductor and capacitor can be used for   matching.  

Figure 47.8 assumes the load impedance is greater than the line impedance, but if this were 

not the case, then the inductor L, needs to be moved to the left side of capacitor C, instead of 

the right hand side and the values for the load and source resistance need to be switched. The 

matching circuit is designed so that both the load and source see a matching impedance.  This 

yields a system of two equations and two unknowns that can be calculated L and C.  In the 

case that the load has a negative reactance and also has less resistance than the source, it is 

convenient to compensate for the negative reactance by making the inductor, L, bigger by the 

appropriate amount. 

 

𝑅0
1 + 𝑠 ∙ 𝐶 ∙ 𝑅0

+ 𝑠 ∙ 𝐿 =  𝑅𝐿   (47.8)  

 

𝑠 ∙ 𝐿 + 𝑅𝐿
𝑠2 ∙ 𝐿 ∙ 𝐶 + 𝑠 ∙ 𝑅𝐿 ∙ 𝐶 + 1

=  𝑅0   (47.9)  

 

Solving these simultaneous equations and assuming a frequency of f0 yields the following: 

 

𝐶 = 
√
𝑅0
𝑅𝐿
 −  1

2𝜋 ∙ 𝑓0 ∙ 𝑅0
   

(47.10)  

 

𝐿 =  𝐶 ∙ 𝑅0 ∙ 𝑅𝐿  (47.11)  

 

This matching strategy can be expanded to the case where the load has negative imaginary 

part to the impedance. In this case, an inductor can be added to cancel that.  If it also turns out 

that the real impedance of the load is greater than the source impedance, then one can simply 

increase the value of the inductor that is already there to tune out this negative imaginary part. 

 

The Simple Match for High Impedance Load 

If it is known that the load is high impedance relative to the transmission line impedance, then 

a simple shunt resistor can be used to match the impedance.  However, when this approach, 

one needs to be sure that the impedance is high, or else the shunt resistance could make the 

impedance matching worse. 
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R0

Source
Trace

R0

||ZL|| >> R0

ZL

Load

R0

 

Table 47.3  Resistive Matching with a Shunt Impedance 

 

The Resistive Pi-Pad 

The resistive pad is a good way to give a broadband impedance match.  The general concept 

is to force the impedance of the pad and the load to look like 50 ohm, regardless of the load 

impedance, or frequency.  The advantages are that it is a broadband match, it does not require 

more expensive inductors, and is much more tolerant to variations in the load impedance.    

The main disadvantage is that some power to the load needs to be sacrificed in order to obtain 

this matching.  As more power to the load is sacrificed, the matching ability of the pad 

increases. 

R0

Source
Trace

RL

Load

R2

R1 R1

R0

 

Figure 47.9  Typical Resistive Pad 

  

For the resistive pad, the attenuation of the pad is specified, and it is designed assuming that 

both the source and load impedance are equal to Ro, usually 50 W.  The resistor values satisfy 

the following equations. 

 

𝑅0 =  𝑅1 ||(𝑅1 + 𝑅1||𝑅0)   (47.12) 
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10𝐴𝑡𝑡𝑒𝑛/20 = 
(𝑅1||𝑅0) ∙ 𝑅1

𝑅1 + 𝑅2 + 𝑅1||𝑅0
  (47.13) 

 

In these equations, R0 is the source impedance, Atten is the attenuation of the pad, and   x || y  

is used to denote the parallel combination of two components, x and y.  The components R1 

and R2 can be calculated as follows: 

 

𝑅1 = 𝑅0 ∙
10𝐴𝑡𝑡𝑒𝑛/20  +   1

10𝐴𝑡𝑡𝑒𝑛/20  −   1
   (47.14)  

 

𝑅2 = 
2 ∙ 𝑅0 ∙ 𝑅1

𝑅12 − 𝑅0
2 (47.15)  

 

In most situations, R0 = 50 W and the attenuation value is either 3 dB or 6 dB.  For these 

common cases the values are calculated. 

 

Atten R1 R2 

3 dB 292.4 W  17.6 W 

6 dB 150.5 W  37.4 W 

Table 47.4 Resistor Values for 3 dB and 6 dB Pi-Pads 

 

The Resistive T-Pad 

The resistive T-Pad is a variation on the resistive Pi pad that is mathematically equivalent and 

has the same number of components, but in a different layout.   The T-Pad gives more 

flexibility for tinkering or converting to an LC match circuit.  The Pi-Pad has only one series 

component and this might be a consideration for high frequency operation. 
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Figure 47.10  Resistive T-Pad 
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The equations for the T-Pad are as follows. 

𝑅0 =  𝑅2 +  𝑅1 ||(𝑅2 + 𝑅0)   (47.16)  

10−𝐴𝑡𝑡𝑒𝑛/20 = 
𝑅1

𝑅1 + 𝑅2 + 𝑅0
  (47.17)  

In these equations, R0 is the source impedance, Atten is the attenuation of the pad, and   x || y 

is used to denote the parallel combination of two components, x and y.  These equations can 

be solved for R2 and R1. 

𝑅2 =  𝑅0 ∙ (
10

𝐴𝑡𝑡𝑒𝑛
20 −   1

10
𝐴𝑡𝑡𝑒𝑛
20 +   1

) (47.18)  

𝑅2 =  𝑅1 ∙ (10
𝐴𝑡𝑡𝑒𝑛
20 −   1) − 𝑅0 (47.19)  

 

In most situations, R0=50 W and the attenuation value is either 3 dB or 6 dB.  For these 

common cases the values are calculated. 

 

Atten R1 R2 

3 dB 8.6 W  141.9 W 

6 dB 16.6 W  66.9 W 

Table 47.5 Resistor Values for 3 dB and 6 dB T-Pads 

 

6 dB Splitter 

If one takes a 6 dB pad and instead considers replacing the grounded resistor with another 

load and series resistor, the 6 dB splitter is attained.  Just as with the resistive pad, the splitter 

will transform the impedance to look closer to 50 ohms. 
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R0 18 W18 W

18 W

To 

Load

To 

Load
 

Figure 47.11  6 dB Splitter 
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Impedance Matching Strategies for PLL Input Pins 

OSCin Pin 

For the OSCin pin, one can generally just use a simple shunt resistor to ground in many cases 

as this pin is typically high impedance, at least at lower frequencies.  If this is not the case, a 

resistive T-Pad is a good choice as this layout also accommodates many other options such as 

an LC match to use three different resistor values to accommodate a source impedance that 

does not match the line impedance.  Many devices have a differential OSCin pin and it is 

generally best for spurs to make the impedance as looking out from both the OSCin and its 

complimentary pin to look roughly the same. 

 

Fin Pin 

The high frequency input pin tends not to be high impedance and tends to be capacitive.  A 

typical example of what this impedance might look like is shown in the following figure. 

 

 

Figure 47.12  Smith Chart Typical Fin Input Impedance 

 

As this input impedance tends to vary around with frequency, the 6 dB T-Pad is often a good 

choice for matching.  If this sacrifices too much power, then this value can be reduced or one 

can tinker with using an LC approach.  As a general rule of thumb and from experience, it 

seems that overly complicated matching circuits should be done with care as they can 

sometimes agitate problems with matching or the VCO harmonics.   One particular pitfall to 
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watch out for is to not be overly averse to avoiding the self-resonant frequencies of the AC 

blocking capacitor.  For instance, the following example shows the use of a 2 pF capacitor for 

a 1 GHz AC coupling capacitor.  2 pF at 1 GHz is 79.5 W, which will definitely be too large 

next to the series 18 W and cause the impedance matching to be poor and a large loss of signal. 

 

 

Trace

R0

PLL

18 W

Fin Pin

2 pF18 W

68 W

 

Figure 47.13  Using Too Small of an AC Coupling Capacitor 

 

Conclusion 

Although impedance matching networks are not always necessary for matching the PLL to 

the VCO, they may be needed when the input impedance of the PLL is poorly matched to the 

PCB trace impedance.  When the trace length between the VCO and PLL approaches one-

tenth of a wavelength, the trace is considered long, and undesired transmission line effects can 

result.  If there is plenty of VCO power to spare, the resistive pad serves as an economical and 

process-resistant solution.  Otherwise, if the PLL is grossly mismatched to the VCO, the 

approach with inductors and capacitors can provide a good match.  When using any sort of 

matching network, it is important to put this network as close to the PLL as possible.   
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Chapter 48       PLL Debugging Techniques  

 

Introduction 

When one has a problem getting a PLL up and running, this can be a frustrating experience.   

It can often be compounded by premature assumptions and lack of a systematic debugging 

process.   The general steps should be to first establish that one is communicating with the 

PLL, then lock the PLL, and thirdly optimize the performance.  This chapter goes through this 

systematic debugging process and then shares some common mistakes that can cause a PLL 

to go wrong.    

 

Establishing Communication with the PLL 

The first step is to confirm that one is communicating with the device.  What this means is 

that a command can be given to the PLL through the serial bus and it will respond to it in the 

way it should.  It is not sufficient to simply observe the programming signals at the PLL pins 

as this does not establish that the PLL is responding to it.  It is best to use software commands 

that require a minimum amount of hardware setup conditions to work such as the methods 

presented to follow. 

 

Readback Method 

Some devices support reading back of registers.  If this can be done, then it is an excellent 

way to verify that communication is working.  However, if this method does not work, it does 

not necessarily demonstrate that communication is not working.  For instance, this could be 

the case if the device is not properly configured for readback in hardware or software. 

Powerdown Method 

The general premise of this method is to demonstrate that the device is communicating by 

powering it up and down via a software programming bit.  The powerdown status of the device 

can typically be determined by current consumption, frequency input pin bias levels, or device 

LDO output voltages.   Current consumption may be the easiest way, but this assumes that the 

PLL is being powered by a power supply that can read current.  If this is not the case, typically 

the high frequency input pin (Fin) biases to about 1.6 V when powered up and 0 V when 

powered down.  Also, the input reference pin (OSCin) typically biases up to about Vcc/2 when 

powered up and 0 V when powered down.  For devices with LDOs, sometimes these voltages 

can be toggled with the powerdown bit. 

 

IO Pin Toggling Method 

Many PLLs have I/O pins that can be toggled high and low to demonstrate communication 

with the device.  For instance, it is common that multiple functions are multiplexed onto the 

lock detect pin or there is a frequency test pin (MUXout).   
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Phase Detector Polarity Method 

This method is easy to try and an effective way to verify communication is working.  

However, if it fails, this does not necessarily mean that communication is not working.  The 

idea is to just simply toggle the phase detector polarity.  This should cause the carrier to jump 

to a different frequency.  For an integrated VCO, be aware that there are multiple frequency 

bands, so the jump is likely much less than the frequency range of the device. 

 

Common Causes of Communication Issues 

If none of the methods presented demonstrate communication with the PLL, then there are 

several common causes for this. 

• Readback not Configured Correctly in Hardware or Software 

• Crossed Programming Lines 

• Device is always in  Powerdown Mode 

o This could be the result if there is a chip enable pin that is pulled low. 

• Improperly Soldered Power Pins 

• Ground DAP not Grounded 

• Intentionally Disconnected Power Pins 

o When using a dual PLL, do not disconnect the power pins to an unused side 

unless directed to.  These pins can often power other blocks, such as the 

programming interface 

• Input Reference not Connected 

o Not having any input reference can interfere with the powerdown/powerup 

test for some devices. 

• Latch Enable (also called CSB) being held High 

o On some devices if the latch enable pin is held high, programming is ignored. 

• Insufficient Slew Rate for Programming Pins 

o As a rough rule of thumb, it is desirable to have at least 30V/ms slew rate on 

the programming lines, although this is device specific. 

o Sometimes there is the practice of putting low pass filters on the programming 

interface pins to reduce EMI.  If this is done, be very cautious not to reduce 

the slew rate. 

• Timing and Voltage Issues with Programming Lines 

o If timing or voltage specs are violated, then this can cause issues with 

programming 
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Getting the PLL to Lock 

Once communication is established, the next step is to try to get the PLL to lock.  There are 

several issues that can cause this which are discussed. 

Program the VCO Frequency within Range 

Although PLLs tend to be broadband, this is not the case for many VCOs.  A common problem 

is to try to program the VCO to a frequency beyond what it can achieve.   One thing to consider 

is that many parts have a VCO divider and the final output frequency is not the VCO 

frequency.  For instance, if a device has VCO that tunes 2 to 4 GHz and a 100 MHz output 

frequency is desired, then the correct is to program the VCO to 2400 MHz and then divide by 

24 to get a 100 MHz output frequency; it would be incorrect to directly program the VCO 

frequency to 100 MHz. 

 

Debugging Using the Lock Detect 

Lock detect is generally not the best way for debugging as a problem with the lock detect 

could give the wrong impression.  However, it is sometimes the best approach when a 

spectrum analyzer is not available or possible to attach to the output.  If using lock detect, try 

to also verify with another method.  For instance, checking the VCO tuning voltage is a good 

way to cross-validate the lock detect.   If the VCO tuning voltage is not at the rail, yet the lock 

detect pin indicates an unlocked situation, some common causes for this are improper settings 

on the programmable lock detect settings.   Also, digital lock detect becomes more challenging 

for higher phase detector frequencies and higher modulator orders, so reducing the phase 

detector frequency or modulator order is a good diagnostic. 

 

Debugging the Loop Filter 

The loop filter has a large impact on performance, but at this stage, the goal is to simply get 

the PLL to lock.  To do this, try commands that cause the VCO frequency to move, such as 

toggling the phase detector polarity, removing/changing the input reference frequency, or 

changing the N divider value by drastic amounts.  Typical issues with the loop filter could be 

that it could be shorted to ground or not connected.  Also be aware that it is common practice 

to accommodate higher order filters and put 0 W resistors for R3 and R4.  If these resistors are 

missing, this could be the issue.   In the case of an active filter, the op-amp is a huge degree 

of freedom, so if ensure that the voltage rails are not being violated and bypass it if possible 

for debugging purposes if nothing else works. 

If the loop filter is unstable, typically the frequency will move, but it might slew across the 

frequency range.  Shorting out resistors R3 and R4 will make the filter theoretically stable.   It 

is typically a symptom if instability if lowering the charge pump current can help the device 

to lock, but just because this does not work does not rule out instability.  Common causes for 

loop filter instability include neglecting to account for the VCO input capacitance, using an 

integrated filter that over-restricts the loop bandwidth, or using the PLL with different settings 

(charge pump gain, VCO gain, VCO frequency, or phase detector frequency) than it was 

originally designed for.  
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Debug the R and N Dividers 

If the R and N dividers are improperly working, then this will cause the PLL to mislock. Aside 

from putting the wrong frequency or insufficient voltage levels, it is also possible to have 

problems with matching and harmonics.   Most PLLs have a way to view the actual output of 

these N and R dividers to check that this frequency is correct. 

  

Debug the VCO Calibration 

For devices with integrated VCOs, the frequency range is typically divided into several 

different bands.  Incorrect programming can cause the VCO to lock to the wrong band.  The 

VCO calibration is typically initiated by the programming of a particular register and therefore 

one should ensure that the other software and hardware conditions (especially input reference 

frequency) are proper when this register is programmed to allow the calibration to work 

correctly.    

 

Analyze the PLL Programming 

The PLL programming has many things that could cause the PLL not to lock.  Analyzing the 

programming might be a necessary task if no other methods get the PLL to lock.  When doing 

this, often this can be facilitated by using the programming software and manually entering in 

the programming information so that it can be interpreted easier. 

 

Optimizing the PLL Performance 

Once the PLL is locked, the next step is to debug any issues that could cause the performance 

to degrade. 

 

 Peaking and Instability 

Peaking is typically observed as a large peaking in the phase noise response near the loop 

bandwidth.  It can also show up as excessive ringing in the transient response. This can be the 

result of VCO phase noise, incorrect component values, the VCO input capacitance, or if the 

actual value of the loop gain, K, is much different from what the loop filter was designed for. 

Peaking can sometimes be caused by the VCO phase noise, if the loop bandwidth is much less 

than the minimum jitter bandwidth, the VCO noise can crop inside the loop bandwidth and 

create peaking.  This is often misinterpreted as low phase margin when in fact it is just the 

VCO noise and more of a matter of optimizing the loop filter and not a functional problem or 

issue with stability. 

Incorrect component values are another cause of peaking and instability.  Some of the common 

mistakes are to accidentally swap C1 and C2, which leads to severe peaking or to have C3 or 

C4 assembled on the board but disregarded in the design.   The VCO input capacitance adds 

in parallel with the input capacitance and this can cause peaking or instability if unaccounted 

for.   In the actual design of a loop filter, one mistake is to try to push the loop bandwidth as 
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wide as possible when it gets limited by the VCO input capacitance or integrated and fixed 

components on the chip.  In this case, some design tools will return the correct loop bandwidth, 

but it might have a lot of peaking in the response.  Good PLL design tools allow the user to 

type in the component values and analyze the performance and stability of this. 

Yet another cause of peaking and instability is when the loop gain changes considerably from 

the value used to design the loop filter. For instance, if a loop filter is designed for a VCO 

with a gain of 20 MHz/V and then the VCO is replaced with one of similar frequency with a 

gain of 100 MHz/V, then the loop dynamics change unless this is compensated for with the 

charge pump current or the loop filter is re-designed.  This same concept applies if the phase 

detector frequency or VCO frequency is changed by a large amount. 

One quick way to diagnose a loop filter stability issue is to observe the impact of reducing the 

loop gain, K.  Also, if a loop filter is not very stable, this also shows up as an excessive lock 

time with a lot of ringing.  This can be done by reducing the charge pump current or increasing 

the N divider value. Usually, the PLL will lock in this case, but there will be severe peaking.   

 

Counter Sensitivity Issues 

If the power delivered to the input pin of the PLL for the input reference or VCO is marginal, 

then this can cause issues that look like instability, increased phase noise, or even high spurs.  

On the VCO input pin, matching can sometimes agitate these issues.   Aside from checking 

these power levels, some other things that can be done is to see if there is any impact by 

touching the PLL and areas near these pins with your finger.   Although this is not a realistic 

solution, it is a great and easy way to sometimes pinpoint the problematic area.  

 

Bad PLL Phase Noise 

Common causes of high PLL phase noise are insufficient slew rate on the input reference, 

high noise on the input reference, and a narrow loop bandwidth.  If using a signal generator 

as the reference source, realize that they tend to be dirty relative to a PLL and will mask the 

PLL noise.  One signal generator trick is to raise the frequency and divide it down by a larger 

R divided to the same phase detector frequency.  If this improves the PLL noise, then this 

often indicates that the signal generator is higher noise than the PLL.  Also, the output power 

can be adjusted to test slew rate.  Another cause of high PLL noise issue is when the loop 

bandwidth of the PLL is too narrow to filter out the VCO noise.  It may look flat, but the VCO 

noise can impact the phase noise inside the loop bandwidth in this case.    

 

High VCO Phase Noise 

Power supply noise and VCO calibration issues are common causes of high VCO noise.  One 

diagnostic for the power supply if it uses an LDO (low dropout regulator) is to either bypass 

the LDO or force it out of regulation by lowering the input voltage.  In terms of VCO 

calibration, one check is to look at the VCO tuning voltage to ensure that it is not near the rail. 
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Inconsistent Performance with the Same Chip 

In some situations, the PLL is locked on different occasions to the same frequency with the 

exact same hardware and software conditions, yet there is a difference in performance.  If the 

difference is fractional spurs, one cause could be if the fractional modulator is not being reset 

to the same initial state when the PLL is programmed.   This initial state impacts the modulator 

sequence of the fractional engine and can impact spurs.  This tends to be an issue with only 

older PLLs as most modern PLLs automatically reset the modulator when the N divider is 

changed.    

Another cause is when the VCO calibration is choosing a different VCO core or band within 

the core.  For instance, consider the situation where the desired frequency is at the boundary 

of two VCO cores.  If the VCO calibration chooses the lower frequency VCO core, then the 

frequency will be near the high end of the frequency for this core, typically implying a higher 

VCO gain.   If the higher VCO core is chosen, then the exact opposite is true.  This difference 

in VCO gain translates into a change in the loop bandwidth.  In addition to the VCO gain, this 

could also lead to differences in the VCO tuning voltage which would cause differences in the 

charge pump performance.  Yet another consideration is that different VCO cores can have 

different spurs and VCO phase noise performance.  

 

Conclusion 

The debugging process for the PLL needs to be systematic starting with establishing 

communication, establishing lock, and then optimizing performance.  It is often the premature 

assumptions that are not true that can cause the debugging process to be longer than necessary. 
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Chapter 49      Solutions to Higher Order Polynomial Equations 

 

Introduction 

In several chapters, it was necessary to find the roots of third or fourth order polynomials.    

These polynomials come up in situations such as calculating the analog transient response and 

design of partially integrated integrated loop filters.  This chapter is for those readers who 

want the satisfaction of a closed form solution when these polynomials arise.  It also turns out 

that as these roots tend to be complex, a closed form solution is often the best approach. 

 

Solution of the Quadratic Polynomial 

Consider the quadratic equation of the form: 

  

𝑎 ∙ 𝑥2 + 𝑏 ∙ 𝑥 + 𝑐 = 0 (49.1)  

 

If a=0, then this is a linear equation, and the solution is trivial.  If not, divide through by a and 

introduce the following substitution. 

 

𝑦 → 𝑥 − 
𝑏

2 ∙ 𝑎
 (49.2)  

 

This approach may be slightly different than the traditional approach of setting the square, but 

is introduced as this substitution method is also useful for the cubic and quartic equation 

solutions as well.   This substitution removes the linear term and simplifies the equation. 

 

𝑦2 =
𝑏2

4 ∙ 𝑎2
− 
𝑐

𝑎
 =  

𝑏2 − 4 ∙ 𝑎 ∙ 𝑐

4 ∙ 𝑎2
 (49.3)  

 

Take the square root of both sides to solve for y and then reverse the substitution (49.2) to get 

the familiar quadratic equation. 

 

𝑥 =
−𝑏 ± √𝑏2 − 4 ∙ 𝑎 ∙ 𝑐

2 ∙ 𝑎
 (49.4)  
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Solution of the Cubic Polynomial 

Although not commonly taught, the cubic equation does have a closed form solution.  For this 

kind of equation, it can be assumed without loss of generality that the leading coefficient is 

one.  This is because if the leading coefficient was zero, then this would be the quadratic 

polynomial and if it was not one, then the equation could be divided through by this lead 

coefficient.  It can therefore be assumed that the cubic equation is of the following form. 

 

𝑥3 + 𝑎2 ∙ 𝑥
2 + 𝑎1 ∙ 𝑥 + 𝑎0 = 0 (49.5)  

 

The first step is to eliminate the square term by introducing the following substitution. 

 

𝑦 − 
𝑎2
3
→ 𝑥 (49.6)  

 

(𝑦 − 
𝑎2
3
)
3

+ 𝑎2 ∙ (𝑦 − 
𝑎2
3
)
2

+ 𝑎1 ∙ (𝑦 − 
𝑎2
3
) + 𝑎0 = 0 (49.7)  

 

After a little work, this reduces the equation to “depressed cubic”.  

 

𝑦3 + 𝑞 ∙ 𝑦 + 𝑟 = 0 (49.8)  

 

𝑞 =
𝑎2

2

3
−
2

3
∙ 𝑎2

2 + 𝑎1 = 𝑎1 − 
𝑎2

2

3
  

(49.9)  

 

𝑟 = −
𝑎2

3

27
+
𝑎2

3

9
− 
𝑎1 ∙ 𝑎2
3

+ 𝑎0 = 𝑎0 +
2 ∙ 𝑎2

3

27
 − 

𝑎1 ∙ 𝑎2
3

  
(49.10)  

 

The derivation for the solution of the depressed cubic typically involves another substitution.  

Mathematician Gerolamo Cardano was first to publish a solution, but the substitution 

presented by the French mathematician François Viète is a little easier to understand.   To do 

this, introduce the following substitution. 

𝑤 −
𝑞

3 ∙ 𝑤
 → 𝑦 (49.11)  

 

(𝑤 −
𝑞

3 ∙ 𝑤
)
3

+ 𝑝 ∙ (𝑤 −
𝑞

3 ∙ 𝑤
) + 𝑟 = 0 (49.12)  
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This simplifies the equation as follows: 

 

𝑤6 + 𝑟 ∙ 𝑤3 −
𝑞3

27
= 0 (49.13)  

 

This equation is quadratic in w3 and can be solved with the quadratic formula: 

 

𝑤 = 
√−𝑟 ± √𝑟2 +

4
27 ∙ 𝑞

3

2
  

3

= √𝑅 ± √𝐷  
3

 
(49.14)  

 

𝑄 =
𝑞

3
=
3 ∙ 𝑎1 − 𝑎2

2

9
  

(49.15)  

 

𝑅 = −
𝑟

2
=
9 ∙ 𝑎1 ∙ 𝑎2 − 2 ∙ 𝑎2

3 − 27 ∙ 𝑎0
54

  
(49.16)  

 

𝐷 = 𝑅2 +𝑄3  
(49.17)  

 

Now assume that D ≥ 0 and focus on just the first real root for (49.14) and call this w0. 

 

𝑤0 =  √𝑅 + √𝑅2 + 𝑄3
3

 (49.18)  

 

Substituting this back yields the first real root. 

 

𝑝0 = 𝑦 −
𝑎2
3
=  𝑤0 + 

𝑄

𝑤0
−
𝑎2
3
= √𝑅 + √𝑅2 + 𝑄3

3

+ 
𝑄

√𝑅 + √𝑅2 + 𝑄3
3

−
𝑎2
3
  

(49.19)  
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This can further be simplified with the following new variables. 

 

𝑝0 = 𝑆 + 𝑇 −
𝑎2
3
  (49.20)  

 

𝑆 = √𝑅 + √𝑅2 + 𝑄3
3

= √𝑅 + √𝐷
3

  (49.21)  

 

𝑇 = 
−𝑄

√𝑅 + √𝑅2 + 𝑄3
3

∙
√𝑅 − √𝑅2 + 𝑄3
3

√𝑅 + √𝑅2 + 𝑄3
3

 =  √𝑅 − √𝑅2 + 𝑄3
3

= √𝑅 − √𝐷
3

 (49.22)  

 

Now there are three cube roots of the cubic equation.  To find the other two roots, first 

realize that there are three cube roots of one, which would be as follows. 

 

√1
3

 =  1  , −
1

2
+ 
𝑗√3

2
,−
1

2
− 
𝑗√3

2
 (49.23)  

 

To find the other roots for (49.14), use the other cube roots of one. 

 

𝑤1 =  𝑤0 ∙ (−
1

2
+ 
𝑗√3

2
   )

=  (−
1

2
+ 
𝑗√3

2
   ) ∙ √𝑅 + √𝑅2 + 𝑄3

3

 (−
1

2
+ 
𝑗√3

2
 ) ∙ 𝑆 

(49.24)  
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This leads to the next root. 

𝑝1 = 𝑤1 +
𝑄

𝑤1
−
a2
3

 

= (−
1

2
+ 
𝑗√3

2
  ) ∙ 𝑆

𝑄

(−
1
2 + 

𝑗√3
2    ) ∙ √𝑅 + √𝑅2 + 𝑄3

3
−
a2
3

= (−
1

2
+ 
𝑗√3

2
   ) ∙ 𝑆 +

𝑇

(−
1
2 + 

𝑗√3
2    )

∙
−
1
2 − 

𝑗√3
2

−
1
2 − 

𝑗√3
2

= −
𝑆

2
+ 𝑆 ∙

𝑗√3

2
−
𝑇

2
−
𝑇

2
∙ 𝑗√3 

 

(49.25)  

𝑝1 = −
𝑎2
3
−
𝑆 + 𝑇

2
−
𝑗√3

2
∙ (𝑆 − 𝑇) (49.26)  

 

Using a very similar derivation, the final root can be found: 

 

𝑝2 = −
𝑎2
3
−
𝑆 + 𝑇

2
+
𝑗√3

2
∙ (𝑆 − 𝑇) (49.27)  

 

The one assumption made so far was that D ≥ 0.  If it is the case that D < 0, then leads to 

taking the cube root of a complex number, which can be a little messy.  In the case that D<0, 

this would involve taking a cube root of a complex number to find S and T and this is a little 

complicated.  One can use Euler’s identity to express these complex numbers in polar form to 

state these roots in terms of trigonometric functions. 

 

𝜃 = 𝑐𝑜𝑠−1 (
𝑅

√−𝑄3
) (49.28)  

𝑝0 = −
𝑎2
3
+ 2√−𝑄 ∙ 𝑐𝑜𝑠 (

𝜃

3
) (49.29)  

𝑝1 = −
𝑎2
3
+ 2√−𝑄 ∙ 𝑐𝑜𝑠 (

𝜃 + 2𝜋

3
) (49.30)  

𝑝2 = −
𝑎2
3
+ 2√−𝑄 ∙ 𝑐𝑜𝑠 (

𝜃 + 4𝜋

3
) (49.31)  
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Solution to the Quartic Equation 

The quartic equation does have a closed form solution and the equations are involved.  This 

section will show the key concepts to the derivation and then give the formula.  Consider an 

equation of the following form: 

 

𝑥4 + 𝑎3 ∙ 𝑥
3 + 𝑎2 ∙ 𝑥

2 + 𝑎1 ∙ 𝑥 + 𝑎0 = 0 (49.32)  

 

The first step is to eliminate the square term by introducing the following substitution. 

 

𝑦 − 
𝑎3
4
→ 𝑥 (49.33)  

 

After a little work, this reduces the equation to “depressed quartic”.  

 

𝑦4 + 𝐴 ∙ 𝑦2 + 𝐵 ∙ 𝑦 + 𝐶 = 0 (49.34)  

 

𝐴 = 𝑎2 −
3 ∙ 𝑎3

2

8
 (49.35)  

 

𝐵 =  𝑎1 +
𝑎3

3

8
−
𝑎3 ∙ 𝑎2
2

 (49.36)  

 

𝐶 =  𝑎0 −
3 ∙ 𝑎3

4

256
+
𝑎3

2 ∙ 𝑎2
16

−
𝑎3 ∙ 𝑎1
4

 (49.37)  

 

Now if B=0, then this equation becomes something that is quadratic in y2, which can easily be 

solved.  If C=0, then one can factor out y and we are left with a cubic equation; both of these 

cases can be handled.   For the more difficult case where B and C are both nonzero, the general 

strategy is to try to write this equation as two squared expressions.  To do this, the strategy is 

to introduce a new variable, u, and rewrite the equation using this new variable.    

 

(𝑦2 + 𝑢)2 = (2 ∙ 𝑢 − 𝐴) ∙ 𝑦2 − 𝐵 ∙ 𝑦 − 𝐶 + 𝑢2 (49.38)  

 

The left side is a perfect square.  The strategy is to choose u such that the right side is also a 

perfect square.  The first step is some rearranging. 
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(𝑦2 + 𝑢)2 = (2 ∙ 𝑢 − 𝐴) ∙ (𝑦 −
𝐵

2 ∙ (2 ∙ 𝑢 − 𝐴)
)
2

−
𝐵2

4 ∙ (2 ∙ 𝑢 − 𝐴)
− 𝐶 + 𝑢2 (49.39)  

 

The right side of this equation can be expressed as a perfect square if the following constraint 

is imposed. 

−
𝐵2

4 ∙ (2 ∙ 𝑢 − 𝐴)
− 𝐶 + 𝑢2 = 0 (49.40)  

 

This can be rearranged to the following cubic equation. 

 

8 ∙ 𝑢3 − 4 ∙ 𝐴 ∙ 𝑢2 − 8 ∙ 𝐶 ∙ 𝑢 + 4 ∙ 𝐴 ∙ 𝐶 − 𝐵2 = 0 (49.41)  

 

This is a cubic equation and can be solved using the methods presented.  Let u0  be a real root 

of this equation.  Then we substitute this back into (49.39) and get the following equation. 

 

(𝑦2 + 𝑢0)
2 = (2 ∙ 𝑢0 − 𝐴) ∙ (𝑦 −

𝐵

2 ∙ (2 ∙ 𝑢0 − 𝐴)
)
2

 (49.42)  

 

One can take the square root of this equation and solve for y. 

 

𝑦2 + 𝑢0 = ±√2 ∙ 𝑢0 − 𝐴 ∙ (𝑦 −
𝐵

2 ∙ (2 ∙ 𝑢0 − 𝐴)
) (49.43)  

 

This can be rearranged into a quadratic form that can be solved. 

 

𝑦2 ∓ 𝑦 ∙ √2 ∙ 𝑢0 − 𝐴 + (𝑢0 ±
𝐵

2 ∙ √2 ∙ 𝑢0 − 𝐴
) =  0 (49.44)  

 

The above method can be used to find all four roots for y, and this can be used to find all the 

roots of the original equation. 
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This being said, it turns out that there is a substitution that can be introduced simplify the 

result and also make it more consistent with the formulae that are commonly presented.  To 

do this, introduce the following substitution into (49.41). 

 

𝑧 −
𝑎3

2

8
⁄

2
→ 𝑢 

(49.45)  

 

Substituting this in the cubic equation and using the definitions of A, B, and C yields the 

following cubic equation after some labor. 

 

𝑧3 − 𝑎2 ∙ 𝑧
2 + (𝑎1 ∙ 𝑎3 − 4 ∙ 𝑎0) ∙ 𝑧 + (4 ∙ 𝑎2 ∙ 𝑎0 − 𝑎1

2 − 𝑎3
2 ∙ 𝑎0) = 0 (49.46)  

 

Let z0 be a solution to (49.46) and apply all the substitutions into (49.44). 

 

𝑥2 +
1

2
∙ (𝑎3 ±√𝑎32 + 4 ∙ 𝑧0 − 4 ∙ 𝑎2) ∙ 𝑥 +

1

2
∙ (𝑧0 ∓√𝑧02 − 4 ∙ 𝑎0)  (49.47)  

 

This can be solved using the regular quadratic equation.  Care needs to be taken when dealing 

with complex numbers and roots to make sure that they do not get switched around. 

 

Fifth and Higher Order Polynomials 

For polynomials of order five and higher, it has been proven that there cannot be a general 

closed form solution that can be written as a finite number of algebraic operations.   This is 

known as Abel’s Impossibility Criteria. 
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Glossary 

 

Channel and Channel Spacing 

In many applications, a set of frequencies is to be generated that are evenly spaced apart.  

These frequencies to be generated are often referred to as channels and the spacing between 

these channels is often referred to as the channel spacing. 

 

Charge Pump 

Used in conjunction with the phase-frequency detector, this device outputs a current of 

constant amplitude, but variable polarity and duty cycle.  It is usually modeled as a device that 

outputs a steady current of value equal to the time-averaged value of the output current. 

 

Charge Pump Gain (KPD) 

The output current of the charge pump when it is fully on.  Note that this textbook does not 

divide this by 2p. 

 

Closed Loop Transfer Function, CL(s)    

This is given by  
𝐺(𝑠)

1+𝐺(𝑠)∙𝐻
 where 𝐻 = 

1

𝑁
    and G(s) is the open loop transfer function. 

 

Continuous Time Approximation 

This is the assumption that discrete current pulses of the charge pump can be approximated as 

a continuous current with magnitude equal to the time-averaged value of the current pulses. 

 

Control Voltage, Vtune    

The input voltage to the VCO controls the VCO frequency. 

 

Damping Factor,      

For a second order transient response, this determines the shape of the exponential envelope 

that multiplies the frequency ringing. 
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Dead Zone 

This is a region near zero phase error for the phase frequency detector caused by component 

delays.  Since the components making up the PFD have a non-zero delay time, this causes the 

phase detector to be insensitive to very small phase errors.  

 

Dead Zone Elimination Circuitry 

This circuitry can be added to the phase detector to avoid having it operating in the dead zone.  

This usually works by causing the charge pump to always come on for some minimum amount 

of time. 

 

Delta Sigma PLL 

A fractional PLL that achieves fractional N values by alternating the N counter value between 

two or more values.  Usually, the case of two values is considered a trivial case and sometimes 

called a traditional fractional PLL or a first order modulator. 

 

Fraction, Simplified 

In reference to fractional PLLs, this is the fractional part of the N divider simplified to lowest 

terms. 

 

Fraction, Larger Equivalent 

This is a fraction that has the exact same mathematical value, but has the numerator and 

denominator multiplied by a constant term.  For instance, 100000/1000000 is a larger 

equivalent fraction for 1/10.  Sometimes there is a benefit to expressing fractions in larger 

equivalent forms for fractional PLLs, other times is not or even detrimental. 

 

Fraction, Larger Uneqivalent 

This is a fraction that has very close to the same mathematical value, but with a much larger 

numerator and denominator that do not simplify.  For instance, 100000/1000001 is a larger 

uneqivalent fraction for 1/10.  Sometimes there is a benefit to expressing fractions in larger 

uneqivalent forms for fractional PLLs, other times is not or even detrimental. 

 

Fractional Denominator, Fden 

The fractional denominator used for in the fractional word in a fractional PLL. 

 

Fractional N PLL 

A PLL in which the N divider value can be a fraction. 
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Fractional Spur 

This is a spurs that occur in a fractional N PLL due to the fractional circuitry.   

 

Fractional Spur, Primary 

Primary fractional spurs occur at multiples of the phase detector frequency divided by the 

simplified fractional denominator.   

 

Fractional Spur, Sub-Fractional 

Fractional spurs that occur at 1/2, 1/3, 1/4, 1/6, or 1/12th of the offset of the primary fractional 

spur.  They depend on the simplified fractional denominator and the modulator order. 

 

Frequency Jump    

In reference to the PLL transient response, this is the frequency difference between initial and 

final (target) frequencies. 

 

Frequency Synthesizer 

This is a PLL that has the VCO integrated on the chip, which can be used to synthesize a wide 

variety of signals.   

 

Frequency Tolerance, tolerance 

This is the acceptable error tolerance for calculating lock time.  If the frequency error is less 

than this tolerance, the PLL is said to be in lock. Typical values for this are 500 Hz or 1 kHz. 

 

Gamma Optimization Parameter,  

A loop filter parameter that has some impact on performance, especially lock time.  This is 

often chosen roughly close to one, but not exactly. 

 

𝛾 =  
𝜔𝑐2 ∙ 𝑇2 ∙ 𝐴1

𝐴0
 

 

Input Reference Frequency, fOSC      

The input frequency to a PLL from which all other PLL frequencies are derived.   
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Locked PLL 

A PLL such that the output frequency is within acceptable tolerance of the desired frequency.  

In this state, the inputs to the phase detector should be close in phase. 

 

Lock Time      

The time it takes for a PLL to switch from an initial frequency to a final frequency for a given 

frequency jump to within a given tolerance. 

 

Loop Bandwidth, c  or BW   

The frequency at which the magnitude of the open loop transfer function is equal to 1.  c is 

the loop bandwidth in radians and BW is the loop bandwidth in Hz.  

 

Loop Filter 

A low pass filter that takes the output currents of the charge pump and turns them into a 

voltage, used as the tuning voltage for the VCO.  Z(s) is often used to represent the impedance 

of this function.  Although not perfectly accurate, some like to view the loop filter as an 

integrator.  

 

Loop Gain Constant, K 

This is an intermediate calculation that is used to derive many results. 

 

𝐾 =  
𝐾𝑃𝐷 ∙ 𝐾𝑉𝐶𝑂

𝑁
 

 

Modulation Domain Analyzer   

A piece of RF equipment that displays the frequency vs. time of an input signal. 

 

Modulation Index,   

This is in reference to a sinusoidally modulated RF signal.  The formula is given below, where 

F(t) stands for the frequency of the signal. 

 

𝑓(𝑡) = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 + 𝑓𝐷𝐸𝑉 ∙ 𝑠𝑖𝑛(2𝜋 ∙ 𝑓𝑀𝑂𝐷 ∙ 𝑡) 

𝛽 = 
𝑓𝐷𝐸𝑉
𝑓𝑀𝑂𝐷
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N Divider      

A divider that divides the high frequency (and phase) output by a factor of N. 

 

Natural Frequency , n      

For a second order transient response, this is the frequency of the ringing of the frequency 

response. 

 

Open Loop Transfer Function,  G(s)    

The transfer function which is obtained by taking the product of the VCO Gain, Charge Pump 

Gain and Loop Filter Impedance divided by N. 

 

𝐺(𝑠) =  
𝐾𝑃𝐷 ∙ 𝐾𝑉𝐶𝑂 ∙ 𝑍(𝑠)

𝑠
 

 

Overshoot 

In reference to the transient response, this is the amount that the target frequency is initially 

exceeded before it finally settles in to the proper frequency. 

 

Phase Detector    

A device that produces an output signal that is proportional to the phase difference of its two 

inputs. 

 

Phase Detector Frequency,  fPD   

The input reference frequency divided by the R counter value.   

 

Phase-Frequency Detector, PFD      

Very similar to a phase detector, but it also produces an output signal that is proportional to 

the frequency error as well. 

 

Phase-Locked Loop, PLL   

A circuit that uses feedback control to produce an output frequency from an input reference 

frequency.  Note that a PLL does not necessarily have the VCO integrated on the same chip.  

In the case that it does, it is typically referred to as a frequency synthesizer. 
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Phase Margin, f  

180 degrees minus phase of the open loop transfer function at the loop bandwidth.  Loop filters 

are typically designed for a phase margin between 30 and 70 degrees.  Simulations show that 

around 48 degrees yields the fastest lock time.  The formula is given below: 

𝜙 = 180° −  ∠𝐺(𝑗 ∙ 𝜔𝑐) 

Phase Noise      

This is noise on the output phase of the PLL.  Since phase and frequency are related, it is 

visible on a spectrum analyzer.  Within the loop bandwidth, the PLL is the dominant noise 

source.  The metric used is dBc/Hz (decibel relative to the carrier per Hz).  This is typically 

normalized to a 1 Hz bandwidth by subtracting 10*(Resolution Bandwidth) of the spectrum 

analyzer. 

 

Phase Noise Floor 

This is the phase noise minus 20∙log(N).  It is generally not a constant because it tends to be 

dominated by the charge pump, which gets noisier at higher phase detector frequencies. 

 

Pole Sum Constant,  

This is an intermediate constant used in loop filter design and is an approximation the sum of 

the poles of the loop filter.  It can be calculated directly from the poles or from the loop filter 

coefficients. 

𝜅 =  𝑇1 + 𝑇3 + 𝑇4 =  𝐴1 𝐴0⁄  

 

Prescaler   

Frequency dividers included as part of the N divider used to divide the high frequency VCO 

signal down to a lower frequency.   

 

Quality Factor (Q)      

The ratio of the imaginary reactance to the resistance of an inductor at a given frequency. 

 

R Divider      

A divider that divides the input reference frequency (and phase) by a factor of R. 

 

Rolloff 

The closed loop gain of the PLL minus 20∙log(N) at a particular frequency of interest.  

Typically, this term is used in spur calculations. 
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Sensitivity 

Power limitations to the high frequency input of the PLL chip (from the VCO).  At these 

limits, the counters start miscounting the frequency and do not divide correctly. 

 

Smith Chart 

A chart that shows how the impedance of a device varies over frequency. 

 

Spectrum Analyzer    

High frequency test equipment that displays the power vs. frequency for an input signal.  This 

piece of equipment works by taking a frequency ramp function and mixing it with the input 

frequency signal.  The output of the mixer is filtered with a bandpass filter, which has a 

bandwidth equal to the resolution bandwidth.  The narrower the bandwidth of this filter, the 

less noise that is let through. 

 

Spur 

Undesired noise concentrated in a very narrow bandwidth at some specified offset from the 

carrier.  There are many different types of spurs and they are often named by the offset from 

the carrier.  In many cases, they occur at equal offsets to the right and left of the carrier.    

 

Spur Gain, SG 

This refers to the magnitude of the open loop transfer function evaluated at the phase detector 

frequency.  This gives a good indication of how the reference spurs of two loop filters 

compare. 

 

Stability 

The ability for a PLL to stay at a locked frequency.   

 

Stability, Discrete Sampling 

PLL stability determined the discrete sampling action of the phase detector not being too wide 

relative to the loop bandwidth as to cause the PLL to lose lock. 

 

Stability, Transfer Function 

PLL stability determined by all the poles of the closed loop transfer function having no 

positive real parts.   
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T31 Ratio (T3/T1 Ratio) 

This is the ratio of the poles of a third order loop filter.  If this ratio is zero, then the loop filter 

is actually second order.  If this ratio is one, then this turns out to be the value for this parameter 

that yields the lowest reference spurs. 

 

T43 Ratio (T4/T3 Ratio) 

This is the ratio of the pole T4 to the pole T3.  A rough rule of thumb is to choose this no 

larger than the T31 ratio. 

 

Temperature Compensated Crystal Oscillator, TCXO 

A crystal that is temperature compensated for improved frequency accuracy. 

 

Varactor Diode 

This is a diode inside a VCO that is reverse biased.  As the tuning voltage to the VCO changes; 

it varies the junction capacitance of this diode, which in turn varies the VCO voltage. 

 

Voltage Controlled Oscillator, VCO  

A device that produces an output frequency that is dependent on an input (Control) voltage. 
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Symbols an Abbreviations 

Loop Filter Parameters 

A0, A1, A2, A3  Loop Filter Coefficients 

C1, C2, C3, C4  Loop filter capacitor values 

CL(s)    Closed loop PLL transfer function 

f    Frequency of interest in Hz  

BW    Loop bandwidth in kHz 

fOSC    Input reference frequency 

fPD    Phase detector frequency 

fSPUR    Spur Frequency 

fVCO    VCO Frequency 

fOUT    PLL output frequency after potential VCO divider 

fN    VCO frequency divided by N 

fR    FOSC frequency divided by R 

 

Fden    Fractional denominator 

Fnum   Fractional Numerator 

G(s)    Loop filter transfer function 

H    PLL feedback, which is 1/N 

i, j    The complex number 1-  

K    Loop gain constant.   

KPD    Charge pump gain in mA/(2p radians) 

KVCO    VCO gain in MHz/V 

N    N divider Value 

PFD    Phase/Frequency Detector 

PLL    Phase-Locked Loop 

r    Ratio of the spur frequency to the loop bandwidth 

R    R divider value 

Q    The quality factor of the inductor = Reactance/Resistance 

R2, R3, R4   Loop filter resistor values 

s    Laplace transform variable = 2p∙f∙j 
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T2    The zero in the loop filter transfer function 

T1, T3, T4   The poles in the loop filter transfer function 

T31, T3/T1   The ratio of the pole T3 to the pole T1 

T43, T4/T3   The ratio of the pole T4 to the pole T3 

tolerance   Frequency tolerance for lock time 

Vcc    The main power supply voltage 

VCO    Voltage Controlled Oscillator 

Vpp    The power supply voltage for the PLL charge pump 

Z(s)    Loop filter impedance 

ZL    Load Impedance 

Z0    Line Impedance 

 

Greek Symbols 

    The modulation index 

    The pole sum constant 

f    The phase margin 

fR    The output phase of the R divider 

fN    The output phase of the N divider 

    The frequency of interest in radians 

c    The loop bandwidth in radians 

n    Natural Frequency 

    Damping Factor 

    Gamma Optimization Parameter 
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Software Recommendations 

 

PLLatinum Sim Tool 

http://www.ti.com/tool/pllatinumsim-sw 

This tool is very comprehensive and the formulae are very consistent with what is in this book.  

This tool is free to download and does very comprehensive filter design as well as simulations 

for bode plot, phase noise, spurs, and lock time. This tool is strongly based on the formulae 

and concepts in this book. 

 

 

 

 

It does comprehensive filter design and simulates phase noise, spurs, and lock time.  It allows 

import and export of phase noise data and has three feature levels to allow users of all levels 

to be able to use this tool. 
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TICSPro Programming Tool 

http://www.ti.com/tool/TICSPRO-SW 

This tool is for programming Texas Instruments PLLs and gives a great understanding of how 

the registers interact.  It can be useful for programming evaluation boards, but is also useful 

without an evaluation board to understand the register programming. 
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Clock Architect Tool 

https://webench.ti.com/clock-tree-architect/ 

This is the Texas Instruments clock architect that allows the creation and simulation of 

solutions using multiple devices.  The equations are simplified to give a high level idea of 

what potential combinations of devices might be good for a final solution 

 

 

 

  

 

Other Websites 

http://tools.rfdude.com/ 

Lance Lascari’s  RF Tools Page.  The Mathcad based PLL design worksheet is pretty good.   

 

http://mathworld.wolfram.com/ 

Comprehensive website for mathematics 

  

https://webench.ti.com/clock-tree-architect/
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Corrected Errata from Previous Edition 
The chapter lengths and page numbering for the 5th and 6th Editions are the same.  In 

addition to some grammatical corrections, the following table shows technical corrections 

from the 5th Edition to the 6th Edition.   

 
Chapter Section Title Type Page Changes Made 

Preface Preface Text i Mention 6th edition corrects 5th edition errors 

2 Loop Characteristics Text 9 Reworded last two sentences 

3 
Example of an Ideal System 

with an Ideal PLL 

Table 3.1 16 Deleted last row with 240 MHz IF frequency 

Text 16 Changed channel 453 to 653 

4 
Principles of oscillation Text 22 

Changed to say it is an odd number of inverters.  Says the gain needs to 
be greater or equal to one for oscillation 

Typical Parallel Crystal Circuit Text 24 Reworded first sentence  

5 R Divider Structure Text 26 
Changed to say that R divider has lower input frequency requirements 
(not process). 

6 
Phase Frequency Detector 

High Level Description 
Text 31 Added KPD name to charge pump current. 

6 
Simplified Operation of the 
PFD 

Fig. 6.5 33 Updated to label both arrows 

10 

Introduction 
Text 71 

Changed the wording for the description of figure 10.1.  Changed all the 

examples to be 1 MHz phase detector with N divide of 900.2 

Table 10.1 72 Changed numbers in the table 

First order modulator Text 74 Typo.  The expression in the forward loop expression is .. 

Higher Order Delta Sigma 

Modulators 
Table 10.2 75 

Shifted all numbers in table up by 1.  Also shifted example in paragraph 

by 1. 

12 

Introduction of Transfer 

Functions  
Text 87 Introduced forward loop gain and reworded some. 

Introduction to Transfer 

Functions 
Table 12.1 88 Fixed VCO Transfer Function 

Analysis of Transfer Functions Text 89 

Made it clear that it was the frequency where the maximum occurs that 

was being shifted by gamma.  Also fixed typo.  “The loop bandwidth is 
the frequency for which …” 

13 General Modulation Principles Fig. 13.1 96 Fixed up “fMOD” which got cut off. 

14 Gain Margin Eq. 14.1 105 Changed to have minus signs (not plus) for the poles 

23 

Degrades as 10∙log(N) with 

Higher N Divider Values and 

Fixed VCO Frequency 

Text 194 Changed from phase detector frequency to phase detector noise. 

23 Appendix Text 
203-
206 

Reference should be [4], not 2.  Changed reference from table 5. 

23 Appendix Eq. 23.10 205 Magnitude should be squared. 

23 Appendix Fig 23.8 207 Fixed missing line in figure 

26 
Estimating Standard Deviation 
from Minimum, Maximum, and 

Sample Size 

Text  
Eq. 26.9 

Table 26.1 

229-

230 

Changed example in paragraph to 22.  Changed equation and updated 

table. 

26 

RMS Phase Error 

Interpretation in the 
Constellation Diagram 

Fig 26.5 235 Lower left point was mislabeled. 

28 Classic PLL Transient Model Fig 28.1 248 Fixed up error in exponential envelop.  Added minus sign. 

29 
Deriving the Equations for the 
Brute Force Method 

Eq. 29.2 
Eq. 29.3 

268 C1 and C2 should be in the numerator 

31 Railing Fig 31.4 289 Legend entries were swapped 

34 Choosing the Loop Bandwidth Table 34.3 307 Fixed first 2 entries. 

36 
Interpretation of the Gamma 

Optimization Factor 
Table 36.1 315 Fixed Errors and changed table entries 

38 
Equations for a Passive Second 

Order Loop Filter 
Eq. 38.8 340 Changed to 2 

38 
Equations for a Passive Second 

Order Loop Filter 
Eq. 38.18 342 T1 and T2 are squared. 

38 
Equations for a Passive Second 

Order Loop Filter 
Eq. 38.19 343 Swapped T1 and T2 in fraction 

41 Active C Filter Fig 41.11 375 Removed capacitor from feedback path. 

Software Clock Tree Architect Tool Section 491 Updated link and diagram to most recent version of website. 

 


